Answer :
Velocity will be 
Explanation:
We have given glass surface has a diameter of 1.5 mm
And charge q = 1.60 nC
Radius of electrons orbit r = height of electron above surface + radius of sphere = 
Force on electron is given by
, here q is charge on sphere and e is charge on electron

This force work as centripetal force
So 

v = 
Answer:
2. the volume of the square are the same
Answer
The rate at which the magnetic field is changing is
Explanation
From the question we are told that
The electric field strength is 
The radius is 
The rate of change of the magnetic field is mathematically represented as

Where
is change of a unit length

Where A is the area which is mathematically represented as

So
where L is the circumference of the circle which is mathematically represented as

So
![E (2 \pi r ) = (\pi r^2 ) [\frac{dB}{dt} ]](https://tex.z-dn.net/?f=E%20%282%20%5Cpi%20r%20%29%20%3D%20%20%28%5Cpi%20r%5E2%20%29%20%5B%5Cfrac%7BdB%7D%7Bdt%7D%20%5D)
![E = \frac{r}{2} [\frac{dB}{dt} ]](https://tex.z-dn.net/?f=E%20%20%3D%20%20%20%5Cfrac%7Br%7D%7B2%7D%20%20%5B%5Cfrac%7BdB%7D%7Bdt%7D%20%5D)
![[\frac{dB}{dt} ] = \frac{E}{ \frac{r}{2} }](https://tex.z-dn.net/?f=%5B%5Cfrac%7BdB%7D%7Bdt%7D%20%5D%20%3D%20%5Cfrac%7BE%7D%7B%20%5Cfrac%7Br%7D%7B2%7D%20%7D)
substituting values
![[\frac{dB}{dt} ] = \frac{3.5 *10^{-3}}{ \frac{15}{2} }](https://tex.z-dn.net/?f=%5B%5Cfrac%7BdB%7D%7Bdt%7D%20%5D%20%3D%20%5Cfrac%7B3.5%20%2A10%5E%7B-3%7D%7D%7B%20%5Cfrac%7B15%7D%7B2%7D%20%7D)
Responder:
A) ω = 565.56 rad / seg
B) f = 90Hz
C) 0.011111s
Explicación:
Dado que:
Velocidad = 5400 rpm (revolución por minuto)
La velocidad angular (ω) = 2πf
Donde f = frecuencia
ω = 5400 rev / minuto
1 minuto = 60 segundos
2πrad = I revolución
Por lo tanto,
ω = 5400 * (rev / min) * (1 min / 60s) * (2πrad / 1 rev)
ω = (5400 * 2πrad) / 60 s
ω = 10800πrad / 60 s
ω = 180πrad / seg
ω = 565.56 rad / seg
SI)
Dado que :
ω = 2πf
donde f = frecuencia, ω = velocidad angular en rad / s
f = ω / 2π
f = 565.56 / 2π
f = 90.011669
f = 90 Hz
C) Periodo (T)
Recordar T = 1 / f
Por lo tanto,
T = 1/90
T = 0.0111111s