Answer:
The percentage of the kinetic energy that is left in the system after collision to that before is 0.174 %
Explanation:
Given;
mass of bullet, m₁ = 4g = 0.004kg
initial velocity of bullet, u₁ = 589 m/s
mass of block of wood, m₂ = 2.3 kg
initial velocity of the block of wood, u₂ = 0
let the final velocity of the system after collision = v
Apply the principle of conservation of linear momentum
m₁u₁ + m₂u₂ = v(m₁+m₂)
0.004(589) + 2.3(0) = v(0.004 + 2.3)
2.356 = 2.304v
v = 2.356 / 2.304
v = 1.0226 m/s
Initial kinetic energy of the system
K.E₁ = ¹/₂m₁u₁² + ¹/₂m₂u₂²
K.E₁ = ¹/₂(0.004)(589)² = 693.842 J
Final kinetic energy of the system
K.E₂ = ¹/₂v²(m₁ + m₂)
K.E₂ = ¹/₂ x 1.0226² x (0.004 + 2.3)
K.E₂ = 1.209 J
The kinetic energy left in the system = final kinetic energy of the system
The percentage of the kinetic energy that is left in the system after collision to that before = (K.E₂ / K.E₁) x 100%
= (1.209 / 693.842) x 100%
= 0.174 %
Therefore, the percentage of the kinetic energy that is left in the system after collision to that before is 0.174 %