This is possible due to self-discharge. Very small internal currents inevitably occur in these cells over time and they will eventually exhaust the chemistry.
Answer:
atom -
the smallest particle of a chemical element that can exist.
atomic mass-
the quantity of matter contained in an atom of an element
atomic weight -
ratio of the average mass of a chemical element's atoms to some standard
protons-
stable subatomic particle that has a positive charge equal in magnitude to a unit of electron charge and a rest mass of 1.67262 × 10−27 kg
electrons-
a stable subatomic particle with a charge of negative electricity, found in all atoms and acting as the primary carrier of electricity in solids
neutrons-
a subatomic particle of about the same mass as a proton but without an electric charge, present in all atomic nuclei except those of ordinary hydrogen.
energy levels-
one of the stable states of constant energy that may be assumed by a physical system
[used especially of the quantum states of electrons in atoms and of nuclei. — called also energy state.]
Covalent bonds
the interatomic linkage that results from the sharing of an electron pair between two atoms.
ionic bonds
type of linkage formed from the electrostatic attraction between oppositely charged ions in a chemical compound.
Valence electrons
a single electron or one of two or more electrons in the outer shell of an atom that is responsible for the chemical properties of the atom.
Lewis Dot Diagram
A way of representing atoms or molecules by showing electrons as dots surrounding the element symbol. One bond is represented as two electrons.
Answer:
0.54
Explanation:
Draw a free body diagram. There are 5 forces on the desk:
Weight force mg pulling down
Applied force 24 N pushing down
Normal force Fn pushing up
Applied force 130 N pushing right
Friction force Fnμ pushing left
Sum of the forces in the y direction:
∑F = ma
Fn − mg − 24 = 0
Fn = mg + 24
Fn = (22)(9.8) + 24
Fn = 240
Sum of the forces in the x direction:
∑F = ma
130 − Fnμ = 0
Fnμ = 130
μ = 130 / Fn
μ = 130 / 240
μ = 0.54
First let us assign variables,
d = distance travelled
t = time it took
v = velocity of the commercial airline
In linear physics, the equation for velocity is given as:
v = d / t
Rewriting for d:
d = v t
We know that the distance to and from south America are equal
therefore:
d1 (going) = d2 (return)
Let us say that velocity of air is v3. Since going to South
America, the wind is against the direction of the plane and the return trip is
the opposite, therefore:
(v1 - v3) t1 = (v1 + v3) t2
(v1 – v3) 4 = (v1 + v3) 3.53
4 v1 – 4 v3 = 3.53 v1 + 3.53 v3
0.47 v1 = 7.53 v3
v1 = 16.02 v3
Since we also know that:
(v1 - v3) t1 = 784
(16.02 v3 – v3) * 4 = 784
60.085 v3 = 784
v3 = 13.05 mph
Therefore the speed of the plane in still air, v1 is:
v1 = 16.02 * 13.05
<span>v1 = 209.03 mph (ANSWER)</span>
<span> </span>
<u>Temperature of the air</u>
According to sources, the most probable answer to this query is that the wet bulb is directly proportional to the temperature of the air. Thank you for your question. Please don't hesitate to ask in Brainly your queries.