Answer:
1. 0 J
2. 7500 J
3. 7500 J
Explanation:
From the question given above, the following data were obtained:
Mass (m) of car = 600 Kg
Initial velocity (v₁) of car = 0 m/s
Final velocity (v₂) of car = 5 m/s
Original kinetic energy (KE₁) =?
Final kinetic energy (KE₂) =?
Work used =?
1. Determination of the original kinetic energy.
Mass (m) of car = 600 Kg
Initial velocity (v₁) of car = 0 m/s
Original kinetic energy (KE₁) =?
KE₁ = ½mv₁²
KE₁ = ½ × 600 × 0²
KE₁ = 0 J
Thus, the original kinetic energy of the car is 0 J.
2. Determination of the final kinetic energy.
Mass (m) of car = 600 Kg
Final velocity (v₂) of car = 5 m/s
Final kinetic energy (KE₂) =?
KE₂ = ½mv₂²
KE₂ = ½ × 600 × 5²
KE₂ = 300 × 25
KE₂ = 7500 J
Thus, the final kinetic energy of the car is 7500 J
3. Determination of the work used.
Original kinetic energy (KE₁) = 0
Final kinetic energy (KE₂) = 7500 J
Work used =?
Work used = KE₂ – KE₁
Work used = 7500 – 0
Work used = 7500 J
Answer:
This is because these metals are used for minting (making) coins.
Answer:
Enamel is used to coat the wires, it is the thinnest possible insulator. The coils are made up of large number of turns and enamel makes it possible to cram a lot of wires (coils) in much smaller space.
Explanation:
Take F=ma
a = F/m
For a higher, F higher or m lower
Means higher horse power for engine or lower mass for the car