Answer:
“We have a brain for one reason and one reason only, and that's to produce adaptable and complex movements,” stated Wolpert, Director of the Computational and Biological Learning Lab at the University of Cambridge. ... The evidence for this is in how well we've learned to mimic our movements using computers and robots.
For each pair Independent variable and the dependent variable is -
a. How much gas is left in the gas tank vs. how far the car has traveled.
- Independent variable = how far the car has traveled
- dependent variable = How much gas is left in the gas tank
b. How much money you've spent vs. how much money is in your wallet.
- Independent variable = How much money you've spent
- dependent variable = how much money is in your wallet.
c. How far a toy car traveled vs. how much time went by
- Independent variable = how much time went by
- dependent variable = How far a toy car traveled
An independent variable in any experiment or research is a variable that is manipulated or changed in the experiment, this change leads to a direct effect on the dependent variable.
A dependent variable is a variable that is directly affected by the independent variable and it is the variable that is measured or tested in an experiment.
Thus,
a. How much gas is left in the gas tank vs. how far the car has traveled.
- Independent variable = how far the car has traveled
- dependent variable = How much gas is left in the gas tank
b. How much money you've spent vs. how much money is in your wallet.
- Independent variable = How much money you've spent
- dependent variable = how much money is in your wallet.
c. How far a toy car traveled vs. how much time went by
- Independent variable = how much time went by
- dependent variable = How far a toy car traveled
Learn more about dependent variables:
brainly.com/question/1670595:
yes that is true because climate is over a period of time
The Answer is:
O 3s
Hope you got it right.
Answer:
the force of attraction between the two charges is 3.55 N.
Explanation:
Given;
first charge carried by the object, q₁ = 15.5 µC
second charge carried by the q₂ = -7.25 µC
distance between the two charges, r = 0.525 m
The force of attraction between the two charges is calculated as;

Therefore, the force of attraction between the two charges is 3.55 N.