1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AysviL [449]
3 years ago
14

Which terms describes elements with different atomic masses due to varying numbers of neutrons?

Physics
2 answers:
fgiga [73]3 years ago
8 0
Isotopes, a...............
mrs_skeptik [129]3 years ago
4 0

: Isotopes

~Sarah Robinsen

You might be interested in
A garden hose with a diameter of 0.64 in has water flowing in it with a speed of 0.46 m/s and a pressure of 1.9 atmospheres. At
STALIN [3.7K]

Answer:

(a).The speed of the water in the nozzle is 3.014 m/s.

(b). The pressure in the nozzle is 1.86 atm.

Explanation:

Given that,

Nozzle diameter = 0.25 in = 0.00635 m

Hose pipe diameter = 0.64 in = 0.016256 m

Pressure = 1.9 atm =192518 Pa

(a). We need to calculate the speed of the water in the nozzle

Flow Speed at the inlet pipe will be given by using Continuity Equation

Q_{1}=Q_{2}

v_{1}A_{1}=v_{2}A_{2}

v_{1}=v_{2}\times(\dfrac{A_{2}}{A_{1}})

Where, A = area of pipe

A=\pi\times \dfrac{d^2}{4}

v_{1}=v_{2}\times(\dfrac{d_{2}^2}{d_{1}^2})

Put the value into the formula

v_{1}=0.46\times\dfrac{(0.016256)^2}{(0.00635)^2}

v_{1}=3.014\ m/s

The speed of the water in the nozzle is 3.014 m/s.

(b). We need to calculate the pressure in the nozzle

Using Bernoulli's Theorem,

P_{1}+\dfrac{1}{2}\rho\times v_{1}^2+\rho gh_{1}=P_{2}+\dfrac{1}{2}\rho\times v_{2}^2+\rho gh_{2}

Where, h_{1}=h_{2}

P_{1}+\dfrac{1}{2}\rho\times v_{1}^2=P_{2}+\dfrac{1}{2}\rho\times v_{2}^2

P_{1}=P_{2}+\dfrac{1}{2}\rho(v_{2}^2-v_{1}^2)

Put the value into the formula

P_{1}=192518 +\dfrac{1}{2}\times1000\times((0.46)^2-(3.014)^2)

P_{1}=188081.702\ Pa

P=1.86\ atm

Hence, (a).The speed of the water in the nozzle is 3.014 m/s.

(b). The pressure in the nozzle is 1.86 atm.

7 0
3 years ago
Calculate the lowest energy (in ev) for an electron in an infinite well having a width of 0.050 mm.
MA_775_DIABLO [31]

The lowest energy of electron in an infinite well is 1.2*10^-33J.

To find the answer, we have to know more about the infinite well.

<h3>What is the lowest energy of electron in an infinite well?</h3>
  • It is given that, the infinite well having a width of 0.050 mm.
  • We have the expression for energy of electron in an infinite well as,

                  E_n=\frac{n^2h^2}{8mL^2}

  • where;

                m=9.1*10^{-31}kg\\L=0.050*10^{-3}m\\h=6.63*10^{-34}Js\\n=1

  • Thus, the lowest energy of electron in an infinite well is,

                E_1=\frac{(6.63*10^{-34})^2}{8*9.1*10^{-31}*(0.050*10^{-3})}=1.2*10^{-33}J

Thus, we can conclude that, the lowest energy of electron in an infinite well is 1.2*10^-33J.

Learn more about the infinite well here:

brainly.com/question/20317353

#SPJ4

7 0
1 year ago
If you fall from a building onto a net which extends the time of impact by 10 times, what happens to the force you experience?
zubka84 [21]

Answer:

A larger impulse. A 1-kg ball has twice as much speed as a 10-kg ball.

Explanation:

6 0
3 years ago
A ball of mass 5 kg attached to a string is swung in a horizontal circle of radius 0.5 m. If the tension in the string is 10 N,
kirill115 [55]

Answer:

0 J

Explanation:

given,

mass of the ball = 5 kg

radius of the horizontal circle = 0.5 m

tension in the string = 10 N

Work done = ?

Work done by the tension in the circular path will be equal to zero.

This is because body moves in circular path, the centripetal force act along the radius of the circle and motion is right angle to the tension on the string.

so, work done = F s cos θ

     θ = 90°,

work done = F s cos 90°        ∵ cos 90° = 0

Work done = 0 J

8 0
3 years ago
The block in the figure below has a mass of 5.1 kg and it rests on an incline of angle . You pull on the rope with a force F = 3
viktelen [127]

42.9°

Explanation:

Let's assume that the x-axis is aligned with the incline and the positive direction is up the incline. We can then apply Newton's 2nd law as follows:

x:\;\;\;\;F - mg\sin{\theta} = 0\;\;\;\;

\Rightarrow mg\sin{\theta} = F

Note that the net force is zero because the block is moving with a constant speed when the angle of the incline is set at \theta. Solving for the angle, we get

\sin{\theta} = \dfrac{F}{mg}

or

\theta = \sin^{-1}\left(\dfrac{F}{mg}\right)

\;\;\;=  \sin^{-1}\left[\dfrac{34\:\text{N}}{(5.1\:\text{kg})(9.8\:\text{m/s}^2)}\right]

\;\;\;=42.9°

6 0
2 years ago
Other questions:
  • Restate newton's first law in terms of acceleratin
    11·1 answer
  • A dog runs with an initial speed if 7.5m/s on a waxed floor. it slides to a stop in 15 seconds. What is the acceleration ​
    6·1 answer
  • According to the theory of plate tectonics
    8·1 answer
  • Explain how these convection currents cause the crust of the Earth to <br> move
    8·1 answer
  • The _____ is the process scientists use to conduct research, which includes a continuing cycle of exploration, critical thinking
    13·2 answers
  • N=-D(n2-n1)/(x2-x1) D is diffastion.What are the dimensions of D.
    7·1 answer
  • What budget item does not necessary include expense
    15·1 answer
  • PLEASE HELP!!! GIVING BRAINLIEST!! ill also answer questions that you have posted if you answer these correctly!!!! (30pts)
    15·1 answer
  • A stalled car is being pushed up a hill at constant velocity by three people. The net force on the car is Group of answer choice
    8·1 answer
  • A wire of resistance R is cut into ten equal parts which are then connected in parallel. The equivalent resistance of the combin
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!