A baseball bat hits a ball is an example of contact force.
Option A.
<h3><u>Explanation:</u></h3>
Contact force is defined as those forces which are acting between two bodies by actually touch between two bodies.
In case of the book falling to ground, the force acting is the gravitational force. Gravitational force acts even when two bodies aren't in contact. So its a non contact force.
Similar is the condition of the leaf and ground where the gravitational force acts.
The magnetic force between the paper clip and the magnet is also non contact force, which acts even when two bodies aren't in contact.
But the bat hitting the ball is having direct contact between the two bodies, and their contact is what makes the ball fly off. So its a contact force.
Answer:
C = 0.0125 m/s⁴. The calculation procedure can be found in the attachment below. The concept of motion along a straight line with constant acceleration has been applied to solve the problem.
Explanation:
The sign convention chosen in this problem solution is upwards as positive and downwards negative. The equation of motion v = u + at has been used to calculate the constant C as only one unknown is contained in this equation. This is so because we have been given the initial velocity, the acceleration and the time taken. To solve future problems of this kind, first thing to check for is an equation of motion with the least number of unknown. This helps to reduce the complexity of the problem solution.
Answer:
While the water falls v increases and h decreases, so the kinetic energy increases and the gravitational potential energy decreases, and this happens in a way that the total energy is always the same. (If there is no friction)
Explanation:
Strange as it may seem, that's true. (choice 'a'.)
"Acceleration" doesn't mean "speeding up". It means ANY change in
the speed or direction of motion. So a car with the brakes applied
and slowing down, and a point on the rim of a bicycle wheel that's
turning at a constant rate, are both accelerating.
Any object that is launched as a projectile will lose speed and, as a result, altitude, as it travels through the air. The rate at which the object loses speed and altitude depends on the amount of force that way applied to it when it was launched. It is also dependent on the size and shape of the item. This is why something like, say, a football is much faster to fall to the ground than a bullet.