Answer:
37.125 m
Explanation:
Using the equation of motion
s=ut+0.5at^{2} where s is distance, u is initial velocity, t is time and a is acceleration
<u>Distance during acceleration</u>
Acceleration, a=\frac {V_{final}-V_{initial}}{t} where V_{final} is final velocity and V_{initial} is initial velocity.
Substituting 0.0 m/s for initial velocity and 4.5 m/s for final velocity, acceleration will be
a=\frac {4.5 m/s-0 m/s}{4.5 s}=1 m/s^{2}
Then substituting u for 0 m/s, t for 4.5 s and a for 1 m/s^{2} into the equation of motion
s=0*4.5+ 0.5*1*4.5^{2}=0+10.125
=10.125 m
<u>Distance at a constant speed</u>
At a constant speed, there's no acceleration and since speed=distance/time then distance is speed*time
Distance=4.5 m/s*6 s=27 m
<u>Total distance</u>
Total=27+10.125=37.125 m
Gate-control theory
<h3>What is Gate-control theory?</h3>
According to the Gate Control Theory of Pain, the spinal cord has a system that allows pain signals to be amplified in the brain before being processed at the spinal cord itself, or attenuated there.
The mechanism that allows or prevents the passage of pain signals is known as the gate. The gate may be open or it may be closed, one of two possibilities:
- When the gate is open, pain signals can enter and are delivered to the brain, where they are perceived as pain.
- If the gate is closed, pain signals will be prevented from ascending to the brain and won't be felt.
The administration of a non-noxious (soothing or light rubbing) stimulus can help engage the gate control mechanism and alleviate pain in those who are exposed to painful (noxious) stimuli.
Learn more about gate-control theory here:
brainly.com/question/15561467
#SPJ4
Answer:
mu = 0.56
Explanation:
The friction force is calculated by taking into account the deceleration of the car in 25m. This can be calculated by using the following formula:

v: final speed = 0m/s (the car stops)
v_o: initial speed in the interval of interest = 60km/h
= 60(1000m)/(3600s) = 16.66m/s
x: distance = 25m
BY doing a the subject of the formula and replace the values of v, v_o and x you obtain:

with this value of a you calculate the friction force that makes this deceleration over the car. By using the Newton second's Law you obtain:

Furthermore, you use the relation between the friction force and the friction coefficient:

hence, the friction coefficient is 0.56
Answer:
least distance= 13mm
ratio of the lattice = 1 : 0.71 : 0.58
Explanation:
given λ₁ = 650nm = 650×10⁻⁹m, λ₂ = 500nm = 500×10⁻⁹m
Answer:
vf = 3.27[m/s]
Explanation:
In order to solve this problem we must analyze each body individually and find the respective equations. The free body diagram of each body (box and bucket) should be made, in the attached image we can see the free body diagrams and the respective equations.
With the first free body diagram, we determine that the tension T should be equal to the product of the mass of the box by the acceleration of this.
With the second free body diagram we determine another equation that relates the tension to the acceleration of the bucket and the mass of the bucket.
Then we equalize the two stress equations and we can clear the acceleration.
a = 3.58 [m/s^2]
As we know that the bucket descends 1.5 [m], this same distance is traveled by the box, as they are connected by the same rope.
![x = \frac{1}{2} *a*t^{2}\\1.5 = \frac{1}{2}*(3.58) *t^{2} \\t = 0.91 [s]](https://tex.z-dn.net/?f=x%20%3D%20%5Cfrac%7B1%7D%7B2%7D%20%2Aa%2At%5E%7B2%7D%5C%5C1.5%20%3D%20%5Cfrac%7B1%7D%7B2%7D%2A%283.58%29%20%2At%5E%7B2%7D%20%5C%5Ct%20%3D%200.91%20%5Bs%5D)
And the speed can be calculated as follows:
![v_{f}=v_{o}+a*t\\v_{f}=0+(3.58*0.915)\\v_{f}= 3.27[m/s]](https://tex.z-dn.net/?f=v_%7Bf%7D%3Dv_%7Bo%7D%2Ba%2At%5C%5Cv_%7Bf%7D%3D0%2B%283.58%2A0.915%29%5C%5Cv_%7Bf%7D%3D%203.27%5Bm%2Fs%5D)