Complete question:
A block of solid lead sits on a flat, level surface. Lead has a density of 1.13 x 104 kg/m3. The mass of the block is 20.0 kg. The amount of surface area of the block in contact with the surface is 2.03*10^-2*m2, What is the average pressure (in Pa) exerted on the surface by the block? Pa
Answer:
The average pressure exerted on the surface by the block is 9655.17 Pa
Explanation:
Given;
density of the lead, ρ = 1.13 x 10⁴ kg/m³
mass of the lead block, m = 20 kg
surface area of the area of the block, A = 2.03 x 10⁻² m²
Determine the force exerted on the surface by the block due to its weight;
F = mg
F = 20 x 9.8
F = 196 N
Determine the pressure exerted on the surface by the block
P = F / A
where;
P is the pressure
P = 196 / (2.03 x 10⁻²)
P = 9655.17 N/m²
P = 9655.17 Pa
Therefore, the average pressure exerted on the surface by the block is 9655.17 Pa
It is simply called Entropy.
Answer:
6370 J
Explanation:
By the law of energy conservation, the work done by the student would be the change in potential enegy from 1st floor to 3rd floor, or a change of 13 m

where m = 50kg is the mass of the student, g = 9.8 m/s2 is the gravitational constant and h = 13 m is the height difference

Answer: The amplitude is 0. (assuming that the amplitude ot both initial waves is the same)
Explanation:
When two monochromatic light waves of the same wavelength and same amplitude undergo destructive interference, means that the peak of one of the waves coincides with the trough of the other, so the waves "cancel" each other in that point in space.
Then if two light waves undergo destructive interference, the amplitude of the resultant wave in that particular point is 0.
He feels a 10 N to the left force moves. Yes ,he moves.