Aluminum foil reflects more light
Answer:
a ) 2.68 m / s
b ) 1.47 m
Explanation:
The jumper will go down with acceleration as long as net force on it becomes zero . Net force of (mg - kx ) will act on it where kx is the restoring force acting in upward direction.
At the time of equilibrium
mg - kx = 0
x = mg / k
= (60 x 9.8 ) / 800
= 0.735 m
At this moment , let its velocity be equal to V
Applying conservation of energy
kinetic energy of jumper + elastic energy of cord = loss of potential energy of the jumper
1/2 m V² + 1/2 k x² = mg x
.5 x 60 x V² + .5 x 800 x .735 x .735 = 60 x 9.8 x .735
30 V² + 216.09 = 432.18
V = 2.68 m / s
b ) At lowest point , kinetic energy is zero and loss of potential energy will be equal to stored elastic energy.
1/2 k x² = mgx
x = 2 m g / k
= (2 x 60 x 9.8) / 800
= 1.47 m
Answer:
The time of Mars is 1.65 times larger on Mars than on Earth
Explanation:
The equation that describes the system is the final speed is equal to the speed minos the speed lost by the collision with the porhole
Vf = Vo - V pothole
B) let's transform the weight of free groin system and N international system
1 N = 0.2248 lb
2.8 lbs (1N / 0.2248lbs) = 12.5 N
c) Kinematic equations are the same in all inertial systems, Mars and Earth, so we can use the height equation, with zero initial velocity
Y = Vo t - ½ g t²
Y = - ½ g t²
t = √ 2Y / g
Mars
gm = 0.37g
gm = 0.37 9.8
gm = 3,626 m / s²
t = √( 2 1.9 / 3.626
)
t = 1.02 s
Earth
t = √( 2 1.9 / 9.8)
t = 0.62 s
To make the comparison of time we are the relationship between the two
tm / te = 1.02 / 0.62
tm / te = 1.65
The time of Mars is 1.65 times larger on Mars than on Earth
Answer:
K = 80.75 MeV
Explanation:
To calculate the kinetic energy of the antiproton we need to use conservation of energy:
<em>where : is the photon energy, : are the rest energies of the proton and the antiproton, respectively, equals to m₀c², : are the kinetic energies of the proton and the antiproton, respectively, c: speed of light, and m₀: rest mass.</em>
Therefore the kinetic energy of the antiproton is:
<u>The proton mass is equal to the antiproton mass, so</u>:
Hence, the kinetic energy of the antiproton is 80.75 MeV.
I hope it helps you!
Answer:
Kinetic energy, E = 133.38 Joules
Explanation:
It is given that,
Mass of the model airplane, m = 3 kg
Velocity component, v₁ = 5 m/s (due east)
Velocity component, v₂ = 8 m/s (due north)
Let v is the resultant of velocity. It is given by :
Let E is the kinetic energy of the plane. It is given by :
E = 133.38 Joules
So, the kinetic energy of the plane is 133.38 Joules. Hence, this is the required solution.