<span>Using conservation of energy and momentum you can solve this question. M_l = mass of linebacker
M_ h = mass of halfback
V_l = velocity of linebacker
V_h = velocity of halfback
So for conservation of momentum,
rho = mv
M_l x V_li + M_h x V_hi = M_l x V_lf + M_h x V_hf
For conservation of energy (kinetic)
E_k = 1/2mv^2/ 1/2mV_li^2 + 1/2mV_{hi}^2 = 1/2mV_{lf}^2 + 1/2mV_{hf}^2
Where i and h stand for initial and final values.
We are already told the masses, \[M_l = 110kg\] \[M_h = 85kg\] and the final velocities \[V_{fi} = 8.5ms^{-1}\] and \[V_{ih} = 7.2ms^{-1} </span>
Answer:
(a) 
(b) 
Explanation:
Hello.
(a) In this case since the car is moving at an initial velocity of 18 m/s due north, the final velocity is computed considering the acceleration as positive since it is due north as well:

(b) In this case, since the car is moving due north by the acceleration is due south it is undergoing a slowing down process, thereby the acceleration is negative therefore the final velocity turns out:

Best regards.
A) To calculate the charge of each coin, we must apply the expression of the Coulomb's Law:
F=K(q1xq2)/r²
F: The magnitud of the force between the charges. (F=2.0 N).
K: Constant of proporcionality of the Coulomb's Law (K=9x10^9 Nxm²/C²).
q1 and q2: Electrical charges.
r: The distance between the charges (r=1.35 m).
We have the values of F, K and r, so we can calculate q1xq2, because both<span> coins have identical charges:
</span>
q1xq2=(r²xF)/K
q1xq2=(1.35 m)²(2.0 N)/9x10^9 Nxm²/C²
q1xq2=3x10^-10 C
q1=q2=(<span>3x10^-10 C)/2
</span>Then, the charge of each coin, is:
<span>
q1=1.5x</span><span>10^-10 C
</span>q2=1.5x10^-10 C
B) <span>Would the force be classified as a force of attraction or repulsion?
</span>
It is a force of repulsion, because both coins have identical charges and both are postive. In others words, when two bodies have identical charges (positive charges or negative charges), the force is of repulsion.
<span>The correct answer is: Oxygen
Explanation:
In order to function properly (movement etc.) during exercise, muscles require oxygen. During exercise, the depth as well as the rate of breathing increase, which in turn increases the amount of oxygen inhaled. In order to expand and contract lungs and for other bodily movements, muscles require oxygen, and for that, more oxygen is carried in the blood to muscles. Hence, the correct answer is Oxygen.</span>
Answer:
Phosphorus
Explanation:
Phosphorus needs 3 electrons to complete its outter most shell of electrons