1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MrMuchimi
3 years ago
9

HELP PLZZ BEST ANSWER WILL GET MARKED BRANILYEST!! (sorry cant spell)

Physics
2 answers:
sergey [27]3 years ago
4 0

based on the table calcium-47 is the correct answer

guajiro [1.7K]3 years ago
3 0

Calcium 47 is best suited as a radioactive tracer for the body's use of calcium

You might be interested in
When a car slows down suddenly, passengers in the car tend to move toward the front of the car. What is this due to?
Neko [114]
Hey there Kendrell!

Yes, this is very true, when the car slows down, our bodies will tend to lean forward a little bit, and this is actually due to the "motion of inertia".

Inertia allows for this to happen, this is why in this case, we have this case.

Hope this helps.
~Jurgen


4 0
3 years ago
A 100g block lies on an inclined plane that makes an angle of 15 degrees with the horizontal. The coefficient of kinetic frictio
Fed [463]

Answer:

Mass that one should put in the container so that the 100 g block slides down the inclined plane at constant speed = 34.16 g

Explanation:

The vertical forces (with respect to the inclined plane) acting on the 100 g block include the component of the weight of the block in the direction vertical to the inclined plane and the normal reaction of the plane on the block.

And sum of upward forces = sum of downward forces.

N = mg cos θ

m = 100 g = 0.10 kg

g = acceleration due to gravity = 9.8 m/s²

θ = 15°

N = (0.1×9.8×cos 15°) = 0.946582 N

The horizontal forces (With respect to the inclined plane) include the frictional force (acting upwards for the inclined plane, opposite to the intended direction of motion), the Tension in the rope (acting downwards, away from the 100 g block) and the horizontal component (with respect to the inclined plane) of the weight of the block, F, (also acting downards).

For the body to slide down the inclined plane at constant speed, the downward sloping forces must balance the frictional force, that is, there will be no acceleration.

Frictional force = Tension + F

Frictional force = μN

where μ = coefficient of kinetic friction = 0.60

N = normal reaction = 0.9466 N

Frictional force = Fr = (0.60 × 0.9466) = 0.56796 N = 0.568 N

The horizontal component (with respect to the inclined plane) of the weight of the block (also acting downards) = mg sin θ

F = (0.10 × 9.8 × sin 15°) = 0.253624 N

Tension in the rope = T = ?

Fr = F + T

T = Fr - F = 0.568 - 0.253624 = 0.314376 N = 0.3144 N

But the balance on the rope now has the total weight on the container (weight of container + weight on the container) to be equal to 2T.

2T = mg

2 × 0.3144 = 9.8m

m = 0.06416 kg = 64.16 g.

Mass of the container = 30 g

So, mass that one should put in the container so that the 100 g block slides down the inclined plane at constant speed = 64.16 - 30 = 34.16 g

Hope this Helps!!!

8 0
3 years ago
PLEASE HELP ME!
Damm [24]
<span>In physical cosmology, cosmic inflation, cosmological inflation, or just inflation, is a theory of exponential expansion of space in the early universe. The inflationary epoch lasted from 10−36 seconds after the conjectured Big Bang singularity to sometime between 10−33 and 10−32 seconds after the singularity.
I hope this helps!!!
</span>
4 0
3 years ago
Read 2 more answers
emperature is most closely related to which property of a liquid? (1 point) Select one: a. the volume of the liquid b. the numbe
Rainbow [258]

Answer

b. the number of atoms in each molecule.

Explanation:

5 0
3 years ago
A student measures the speed of yellow light in water to be 2.00x10^8
max2010maxim [7]

NOTE: The given question is incomplete.

<u>The complete question is given below.</u>

A student measures the speed of yellow light in water to be 2.00 x 10⁸ m/s. Calculate the speed of light in air.

Solution:

Speed of yellow light in water (v) = 2.00 x 10⁸ m/s

Refractive Index of water with respect to air (μ) = 4/3

Refractive Index = Speed of yellow light in air / Speed of yellow light in water

Or,  The speed of yellow light in air = Refractive Index × Speed of yellow light in water

or,                                           = (4/3) × 2.00 x 10⁸ m/s

or,                                           = 2.67 × 10⁸ m/s ≈ 3.0 × 10⁸ m/s

Hence, the required speed of yellow light in the air will be 3.0 × 10⁸ m/s.

7 0
3 years ago
Other questions:
  • A 15.4 kg block is dragged over a rough, horizontal surface by a constant force of 182 N acting at an angle of 24◦ above the hor
    5·1 answer
  • What does Einstein's famous equation for nuclear energy, E = mc^2, mean?
    10·1 answer
  • The process called _____ destroys old oceanic crust at subduction zones.
    7·1 answer
  • As shown in the diagram, two forces act on an object. The forces have magnitudes F1 = 5.7 N and F2 = 1.9 N. What third force wil
    9·1 answer
  • A large power plant heats 1917 kg of water per second to high-temperature steam to run its electrical generators.
    5·1 answer
  • A mouse runs along a baseboard in your house. The mouse's position as a function of time is given by x(t)=pt 2+qt, with p = 0.36
    6·1 answer
  • This table shows the acceleration due to gravity on four planets. Planet Gravity (m/s2) Earth 9.8 Mercury 3.7 Neptune 11.2 Uranu
    9·2 answers
  • how fast will and in what direction will a 20kg object accelerate if one force pushes at a 30 degree angle and another pushes at
    10·1 answer
  • If there are 6 coulombs of charge moving through a wire in 2 seconds. How many amps are moving through this wire?
    14·1 answer
  • I need help with one through six please
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!