Answer:
The velocity is 
Explanation:
From the question we are told that
The mass of the bullet is 
The initial speed of the bullet is 
The mass of the target is 
The initial velocity of target is 
The final velocity of the bullet is is 
Generally according to the law of momentum conservation we have that

=> 
=> 
Answer:
<em>10.90km</em>
Explanation:
Magnitude of the total displacement is expressed using the equation
d = √dx²+dy²
dx is the horizontal component of the displacement
dy is the vertical component of the displacement
dy = -6.7sin27°
dy = -6.7(0.4539)
dy = -3.042
For the horizontal component of the displacement
dx = -4.5 - 6.7cos27
dx = -4.5 -5.9697
dx = -10.4697
Get the magnitude of the bicyclist's total displacement
Recall that: d = √dx²+dy²
d = √(-3.042)²+(-10.4697)²
d = √9.2538+109.6146
d = √118.8684
<em>d = 10.90km</em>
<em>Hence the magnitude of the bicyclist's total displacement is 10.90km</em>
<em></em>
Answer:
The 16ᵗʰ term of this sequence is 82
Step-by-step explanation:
Here,
First Term = a₁ = 9
Common Difference = (d) = 2
Now, For 16ᵗʰ term, n = 16
<em>aₙ = a + (n - 1)d</em>
a₁₆ = 7 + (16 - 1) × 2
a₁₆ = 7 + 15 × 5
a₁₆ = 7 + 75
a₁₆ = 82
Thus, The 16ᵗʰ term of this sequence is 82
<u>-TheUnknownScientist</u>
Answer:
-6327.45 Joules
650.375 Joules
378.47166 N
Explanation:
h = Height the bear slides from = 15 m
m = Mass of bear = 43 kg
g = Acceleration due to gravity = 9.81 m/s²
v = Velocity of bear = 5.5 m/s
f = Frictional force
Potential energy is given by

Change that occurs in the gravitational potential energy of the bear-Earth system during the slide is -6327.45 Joules
Kinetic energy is given by

Kinetic energy of the bear just before hitting the ground is 650.375 Joules
Change in total energy is given by

The frictional force that acts on the sliding bear is 378.47166 N
Refer to attachment for your answer