1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Masteriza [31]
3 years ago
8

True or False!?

Physics
1 answer:
grin007 [14]3 years ago
8 0
Solution= The answer is true

You might be interested in
A crowbar 2727 in. long is pivoted 66 in. from the end. What force must be applied at the long end in order to lift a 600600 lb
NikAS [45]

To solve this problem we will apply the concepts related to equilibrium, for this specific case, through the sum of torques.

\sum \tau = F*d

If the distance in which the 600lb are applied is 6in, we will have to add the unknown Force sum, at a distance of 27in - 6in will be equivalent to that required to move the object. So,

F*(27-6)= 6*600

F = \frac{6*600}{21}

F= 171.42 lb

So, Force that must be applied at the long end in order to lift a 600lb object to the short end is 171.42lb

4 0
3 years ago
Maganda ka Tapos Liit mopa<br>​
kirza4 [7]

Answer:

naol may pinoy dito nag jakoI

5 0
3 years ago
A telephone line has a signal-to-noise ratio of 1000 and a bandwidth of 4 KHz. What is the maximum data rate supported by this l
ivolga24 [154]

Answer:

The maximum data rate supported by this line is 39900 bps

Explanation:

The maximum data rate supported by this line can be obtained using the formula below

c = W*log2(S/N+1)

where;

c is the maximum data rate supported by the line

W is the bandwidth = 4kHz

S/N+1 is the signal to noise ratio = 1001

c = 4*log2(1001)

c = 39868.9 ≅ 39900 bps

Therefore, the maximum data rate supported by this line is 39900 bps

5 0
4 years ago
A small rock is thrown straight up with initial speed v0 from the edge of the roof of a building with height H. The rock travels
Crank

Answer:

v_{avg}=\dfrac{3gH+v_0^2}{v_0+\sqrt{v_0^2+2gH} }

Explanation:

The average velocity is total displacement divided by time:

v_{avg} =\dfrac{D_{tot}}{t}

And in the case of vertical v_{avg}

v_{avg}=\dfrac{y_{tot}}{t}

where y_{tot} is the total vertical displacement of the rock.

The vertical displacement of the rock when it is thrown straight up from height H with initial velocity v_0 is given by:

y=H+v_0t-\dfrac{1}{2} gt^2

The time it takes for the rock to reach maximum height is when y'(t)=0, and it is

t=\frac{v_0}{g}

The vertical distance it would have traveled in that time is

y=H+v_0(\dfrac{v_0}{g} )-\dfrac{1}{2} g(\dfrac{v_0}{g} )^2

y_{max}=\dfrac{2gH+v_0^2}{2g}

This is the maximum height the rock reaches, and after it has reached this height the rock the starts moving downwards and eventually reaches the ground. The distance it would have traveled then would be:

y_{down}=\dfrac{2gH+v_0^2}{2g}+H

Therefore, the total displacement throughout the rock's journey is

y_{tot}=y_{max}+y_{down}

y_{tot} =\dfrac{2gH+v_0^2}{2g}+\dfrac{2gH+v_0^2}{2g}+H

\boxed{y_{tot} =\dfrac{2gH+v_0^2}{g}+H}

Now wee need to figure out the time of the journey.

We already know that the rock reaches the maximum height at

t=\dfrac{v_0}{g},

and it should take the rock the same amount of time to return to the roof, and it takes another t_0 to go from the roof of the building to the ground; therefore,

t_{tot}=2\dfrac{v_0}{g}+t_0

where t_0 is the time it takes the rock to go from the roof of the building to the ground, and it is given by

H=v_0t_0+\dfrac{1}{2}gt_0^2

we solve for t_0 using the quadratic formula and take the positive value to get:

t_0=\dfrac{-v_0+\sqrt{v_0^2+2gH}  }{g}

Therefore the total time is

t_{tot}= 2\dfrac{v_0}{g}+\dfrac{-v_0+\sqrt{v_0^2+2gH}  }{g}

\boxed{t_{tot}= \dfrac{v_0+\sqrt{v_0^2+2gH}  }{g}}

Now the average velocity is

v_{avg}=\dfrac{y_{tot}}{t}

v_{avg}=\dfrac{\frac{2gH+v_0^2}{g}+H }{\frac{v_0+\sqrt{v_0^2+2gH} }{g} }

\boxed{v_{avg}=\dfrac{3gH+v_0^2}{v_0+\sqrt{v_0^2+2gH} } }

5 0
3 years ago
An oscillating block - spring system has a mechanical energy of 1.10 j, and amplitude of 11.0 cm, and a maximum speed of 1.7 m/s
ioda
The total mechanical energy of the block-spring system is given by the sum of the potential energy and the kinetic energy of the block:
E=U+K= \frac{1}{2}kx^2 + \frac{1}{2}mv^2
where
k is the spring constant
x is the elongation/compression of the spring
m is the mass of the block
v is the speed of the block

At the point of maximum displacement of the spring, the velocity of the block is zero: v=0, so the kinetic energy is zero and the mechanical energy is just potential energy of the spring:
E= \frac{1}{2}kA^2 (1)
where we used x=A, the amplitude (which is the maximum displacement of the spring).
Since we know 
A = 11.0 cm= 0.11 m
E = 1.10 J
We can re-arrange (1) to find the spring constant:
k= \frac{2E}{A^2} = \frac{2 \cdot 1.10 J}{(0.11 m)^2}=181.8 N/m
3 0
3 years ago
Other questions:
  • Which of the following usually occurs with a short circuit? a. All parts of the circuit will begin to carry higher amounts of cu
    5·1 answer
  • What is the pressure at the bottom<br> of a 2.50 m deep pool of water?
    8·1 answer
  • When in orbit, a satellite such as the space shuttle is
    12·2 answers
  • A similarity between radio waves and microwaves is that both are used for _____.
    9·2 answers
  • A car drives for 30 km with a speed of 30m/s. How much time does it take the car to travel this distance?
    9·1 answer
  • A meter stick with a mass of 0.155 kg is pivoted about one end so it can rotate without friction about a horizontal axis. The me
    5·1 answer
  • If the mass of a material is 76 grams and the volume of the material is 14 cm3, what would the density of the material be?
    14·1 answer
  • Communication satellite use__sent by a transmitting station to transmit signals over long distances A microwaves B polar waves C
    13·1 answer
  • Select the correct answer
    5·2 answers
  • I NEED HELP ASAP IM ON TIMER !!!!
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!