Whenever an object is falling, its potential energy
is decreasing and its kinetic energy is increasing.
Olivia's potential energy is decreasing and her kinetic energy
is increasing as she moves toward the right side of the picture,
all the way from W, through X, to the bottom of the arc.
200 joules of work energy are involved. That's all we need to know to answer the question. Once we know that 200 joules of work energy are involved, we don't care what was lifted, or how far, or how long it took, or how many people worked on it, or how much they were paid, or what was the distribution of their gender identities, or the ethnic diversity among the team. or what day each of them celebrates as their sabbath. Any other information besides the 200 joules is only there to distract us, and see whether we're paying attention.
Power = (work or energy) / (time to do the work or move the energy)
Power = (200 joules) / (5 seconds)
<em>Power = 40 watts</em>
Answer:
it Give only one of them a positive or negative charge
Answer : 413.44N
Here it is given that an elevator is moving down with an acceleration of 3.36 m/s² . And we are interested in finding out the apparent weight of a 64.2 kg man . For the diagram refer to the attachment .
- From the elevator's frame ( non inertial frame of reference) , we would have to think of a pseudo force.
- The direction of this force is opposite to the direction of acceleration the frame and its magnitude is equal to the product of mass of the concerned body with the acceleration of the frame .
- When a elevator accelerates down , the weight recorded is less than the actual weight .
From the Free body diagram ,
- Mass of the man = 64.2 kg