(1) Outcomes
(2) Permutation
(3) Tree Diagram
(4) Counting Principle
(5) Combination
(6) Factorial
(7) Addition Principle of Counting
(8) Multiplication Principle of Counting
<em>Hope this helps</em>
<em>-Amelia The Unknown</em>
<h2>Answer:</h2><h2>-4</h2><h2 /><h2>Hope this helps!!</h2>
Answer:
x^4 - 14x^2 - 40x - 75.
Step-by-step explanation:
As complex roots exist in conjugate pairs the other zero is -1 - 2i.
So in factor form we have the polynomial function:
(x - 5)(x + 3)(x - (-1 + 2i))(x - (-1 - 2i)
= (x - 5)(x + 3)( x + 1 - 2i)(x +1 + 2i)
The first 2 factors = x^2 - 2x - 15 and
( x + 1 - 2i)(x +1 + 2i) = x^2 + x + 2ix + x + 1 + 2i - 2ix - 2i - 4 i^2
= x^2 + 2x + 1 + 4
= x^2 + 2x + 5.
So in standard form we have:
(x^2 - 2x - 15 )(x^2 + 2x + 5)
= x^4 + 2x^3 + 5x^2 - 2x^3 - 4x^2 - 10x - 15x^2 - 30x - 75
= x^4 - 14x^2 - 40x - 75.
Answer:
?=19
x=30
Step-by-step explanation:
5/6x - 1/5x = 19
5(5/6x) - 6(1/5x) = 19
25/30x-6/30x=19
19/30x=19
19x=19(30)
19x=570
x= 570/19
x=30
- X + 8 > 6
- X > 6 - 8
- X > - 2
X < 2