To solve this problem it is necessary to apply the concepts related to Dopler's Law. Dopler describes the change in frequency of a wave in relation to that of an observer who is in motion relative to the Source of the Wave.
It can be described as

c = Propagation speed of waves in the medium
= Speed of the receiver relative to the medium
= Speed of the source relative to the medium
Frequency emited by the source
The sign depends on whether the receiver or the source approach or move away from each other.
Our values are given by,
Velocity of car
velocity of motor
Velocity of sound
Frequency emited by the source
Replacing we have that



Therefore the frequency that hear the motorcyclist is 601.7Hz
1) The average velocity is 
2) The instantaneous velocity is 
Explanation:
1)
The average velocity of an object is given by

where
d is the displacement
t is the time elapsed
In this problem, the position of the particle is given by the function

where t is the time.
The position of the particle at time t = 6 sec is

While the position at time t = 12 sec is

So, the displacement is

And therefore the average velocity is

2)
The instantaneous velocity of a particle is given by the derivative of the position vector.
The position vector is

By differentiating with respect to t, we find the velocity vector:

Therefore, the instantaaneous velocity at any time t can be found by substituting the value of t in this expression.
Learn more about velocity:
brainly.com/question/5248528
#LearnwithBrainly
Answer:
163.35
__________________________________________________________
<u>We are given:</u>
Mass of the object (m) = 36.3 kg
Velocity of the object (v) = 3 m/s
<u>Kinetic Energy of the object:</u>
We know that:
Kinetic Energy = 1/2(mv²)
KE = 1/2(36.3)(3)² [replacing the variables with the given values]
KE = 18.15 * 9
KE = 163.35 Joules
Hence, the cart has a Kinetic Energy of 163.35 Joules
Scientists use theories to explain these things
Answer:
When the air pressure in the throat and outside the body is less than the air pressure in the middle ear, barotrauma occurs.
Explanation:
Ear barotrauma is a medical condition that describes discomfort in the ear which is caused by pressure differences in the inner and outer ear drum.
Usually, the air pressure in the middle ear is the same as the air pressure in the throat and outside the body.
When we swallow, the eustachian tube opens up and air flows out of and into the middle ear, this balances the pressure. But if the eustachian tube is blocked, the air pressure in the throat and outer body become different from the air pressure in the middle ear.