Because the specific metals aren’t mentioned in this inquiry.
The educational guesses that we can propose is that:
<span><span>1. </span>The
hypothetical inquiry: There are existing metals for making pots that will cook
food much faster.</span>
<span><span>2. </span>The
one-tailed alternative hypothesis: There are other metals for making pots that
will cook food much faster than the other metals.</span>
<span><span>
3. </span>The
one-tailed null hypothesis: All metals that are used in making pots will cook
food at an equal rate.</span>
Answer:
Explanation:
horizontal is zero slope, and the vertical is undefined
Work = force × distance
= 35 N × 200 m
= 7000 J
Answers:(a) 
μT
(b) 
μm
(c) f =
Explanation:Given electric field(in y direction) equation:

(a) The amplitude of electric field is

. Hence
The amplitude of magnetic field oscillations is

Where c = speed of light
Therefore,

μT (Where T is in seconds--signifies the oscillations)
(b) To find the wavelength use:



μm
(c) Since c = fλ
=> f = c/λ
Now plug-in the values
f = (3*10^8)/(0.4488*10^-6)
f =
Answer:
The velocity of the star is 0.532 c.
Explanation:
Given that,
Wavelength of observer = 525 nm
Wave length of source = 950 nm
We need to calculate the velocity
If the direction is from observer to star.
From Doppler effect

Put the value into the formula







Negative sign shows the star is moving toward the observer.
Hence, The velocity of the star is 0.532 c.