<span>Answer: option (1) solubility of the solution increases.
</span><span />
<span>Justification:
</span><span />
<span>The solubility of substances in a given solvent is temperature dependent.
</span><span />
<span>The most common behavior of the solubility of salts in water is that the solubiilty increases as the temperature increase.
</span><span />
<span>To predict with certainty the solubility at different temperatures you need the product solubility constants (Kps), which is a constant of equlibrium of the dissolution of a ionic compound slightly soluble in water, or a chart (usually experimental chart) showing the solubilities at different temperatures.
</span><span />
<span>KClO₃ is a highly soluble in water, so you do not work with Kps.
</span><span />
<span>You need the solubility chart or just assume that it has the normal behavior of the most common salts. You might know from ordinary experience that you can dissolve more sodium chloride (table salt) in water when the water is hot. That is the same with KClO₃.
</span><span>The solubility chart of KlO₃ is almost a straight line (slightly curved upward), with positive slope (ascending from left to right) meaning that the higher the temperature the more the amount of salt that can be dissolved.</span>
5.18mL i hope this helps i hope this does to!
Answer:
The ΔH is 5.5 kJ/mol and the reaction is endothermic.
Explanation:
To calculate the ∆H (heat of reaction) of the combustion reaction, that is, the heat that accompanies the entire reaction, you must make the total sum of all the heats of the products and of the reagents affected by their stoichiometric coefficient ( number of molecules of each compound participating in the reaction) and finally subtract them:
Combustion enthalpy = ΔH = ∑H products - ∑Hreactants
In this case:
ΔH = 15.7 kJ/mol - 10.2 kJ/mol= 5.5 kJ/mol
An endothermic reaction is one whose enthalpy value is positive, that is, the system absorbs heat from the environment (ΔH> 0).
<u><em>The ΔH is 5.5 kJ/mol and the reaction is endothermic.</em></u>
To calculate number of moles, all you do is divide the given mass by the molecular molar mass:
<span>i.e. 125g / 18g = 6.94444g </span>
<span>Therefore, your answer is (a) 6.94 g</span>