1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Maru [420]
3 years ago
7

How do you determine whether to draw the boundary line of the graph of a linear inequality dashed or solid?

Mathematics
1 answer:
hammer [34]3 years ago
4 0
Solid is if x is greater/less than or equal to (there isn’t a symbol for it) the line and the line would be dashed if x is < or > something
You might be interested in
Intergrate secx(secx+tanx) dx
frozen [14]
\displaystyle\int\sec x(\sec x+\tan x)\,\mathrm dx=\int(\sec^2x+\sec x\tan x)\,\mathrm dx=\tan x+\sec x+C
3 0
3 years ago
Kenny is packing cans into bags at the food bank he cn pack 8 cans into each bag how many bags how many bags will kenny need for
Sholpan [36]
1056cans/ 8 cans=132 bags
3 0
3 years ago
WILL mark answer right if gotten right
marin [14]

Answer:

ooh bruh it pink

Step-by-step explanation:

7 0
3 years ago
This 1 seems really complicated
Fofino [41]
The solution to this system set is:  "x = 4" , "y = 0" ;  or write as:  [4, 0] .
________________________________________________________
Given: 
________________________________________________________
 y = - 4x + 16 ; 

 4y − x + 4 = 0 ;
________________________________________________________
"Solve the system using substitution" .
________________________________________________________
First, let us simplify the second equation given, to get rid of the "0" ; 

→  4y − x + 4 = 0 ; 

Subtract "4" from each side of the equation ; 

→  4y − x + 4 − 4 = 0 − 4 ;

→  4y − x = -4 ;
________________________________________________________
So, we can now rewrite the two (2) equations in the given system:
________________________________________________________
   
y = - 4x + 16 ;   ===> Refer to this as "Equation 1" ; 

4y − x =  -4 ;     ===> Refer to this as "Equation 2" ; 
________________________________________________________
Solve for "x" and "y" ;  using "substitution" :
________________________________________________________
We are given, as "Equation 1" ;

→  " y = - 4x + 16 " ;
_______________________________________________________
→  Plug in this value for [all of] the value[s] for "y" into {"Equation 2"} ;

       to solve for "x" ;   as follows:
_______________________________________________________
Note:  "Equation 2" :

     →  " 4y − x =  - 4 " ; 
_________________________________________________
Substitute the value for "y" {i.e., the value provided for "y";  in "Equation 1}" ;
for into the this [rewritten version of] "Equation 2" ;
→ and "rewrite the equation" ;

→   as follows:  
_________________________________________________

→   " 4 (-4x + 16) − x = -4 " ;
_________________________________________________
Note the "distributive property" of multiplication :
_________________________________________________

   a(b + c)  = ab + ac ;   AND: 

   a(b − c) = ab <span>− ac .
_________________________________________________
As such:

We have:  
</span>
→   " 4 (-4x + 16) − x = - 4 " ;
_________________________________________________
AND:

→    "4 (-4x + 16) "  =  (4* -4x) + (4 *16)  =  " -16x + 64 " ;
_________________________________________________
Now, we can write the entire equation:

→  " -16x + 64 − x = - 4 " ; 

Note:  " - 16x − x =  -16x − 1x = -17x " ; 

→  " -17x + 64 = - 4 " ;   Solve for "x" ; 

Subtract "64" from EACH SIDE of the equation:

→  " -17x + 64 − 64 = - 4 − 64 " ;   

to get:  

→  " -17x = -68 " ;

Divide EACH side of the equation by "-17" ; 
   to isolate "x" on one side of the equation; & to solve for "x" ; 

→  -17x / -17 = -68/ -17 ; 

to get:  

→  x = 4  ;
______________________________________
Now, Plug this value for "x" ; into "{Equation 1"} ; 

which is:  " y = -4x + 16" ; to solve for "y".
______________________________________

→  y = -4(4) + 16 ; 

        = -16 + 16 ; 

→ y = 0 .
_________________________________________________________
The solution to this system set is:  "x = 4" , "y = 0" ;  or write as:  [4, 0] .
_________________________________________________________
Now, let us check our answers—as directed in this very question itself ; 
_________________________________________________________
→  Given the TWO (2) originally given equations in the system of equation; as they were originally rewitten; 

→  Let us check;  

→  For EACH of these 2 (TWO) equations;  do these two equations hold true {i.e. do EACH SIDE of these equations have equal values on each side} ; when we "plug in" our obtained values of "4" (for "x") ; and "0" for "y" ??? ; 

→ Consider the first equation given in our problem, as originally written in the system of equations:

→  " y = - 4x + 16 " ;    

→ Substitute:  "4" for "x" and "0" for "y" ;  When done, are both sides equal?

→  "0 = ?  -4(4) + 16 " ?? ;   →  "0 = ? -16 + 16 ?? " ;  →  Yes!  ;

 {Actually, that is how we obtained our value for "y" initially.}.

→ Now, let us check the other equation given—as originally written in this very question:

→  " 4y − x + 4 = ?? 0 ??? " ;

→ Let us "plug in" our obtained values into the equation;

 {that is:  "4" for the "x-value" ; & "0" for the "y-value" ;  

→  to see if the "other side of the equation" {i.e., the "right-hand side"} holds true {i.e., in the case of this very equation—is equal to "0".}.

→    " 4(0)  −  4 + 4 = ? 0 ?? " ;

      →  " 0  −  4  + 4 = ? 0 ?? " ;

      →  " - 4  + 4 = ? 0 ?? " ;  Yes!
_____________________________________________________
→  As such, from "checking [our] answer (obtained values)" , we can be reasonably certain that our answer [obtained values] :
_____________________________________________________
→   "x = 4" and "y = 0" ;  or; write as:  [0, 4]  ;  are correct.
_____________________________________________________
Hope this lenghty explanation is of help!  Best wishes!
_____________________________________________________
7 0
3 years ago
Can I get help with finding the Fourier cosine series of F(x) = x - x^2
trapecia [35]
Assuming you want the cosine series expansion over an arbitrary symmetric interval [-L,L], L\neq0, the cosine series is given by

f_C(x)=\dfrac{a_0}2+\displaystyle\sum_{n\ge1}a_n\cos nx

You have

a_0=\displaystyle\frac1L\int_{-L}^Lf(x)\,\mathrm dx
a_0=\dfrac1L\left(\dfrac{x^2}2-\dfrac{x^3}3\right)\bigg|_{x=-L}^{x=L}
a_0=\dfrac1L\left(\left(\dfrac{L^2}2-\dfrac{L^3}3\right)-\left(\dfrac{(-L)^2}2-\dfrac{(-L)^3}3\right)\right)
a_0=-\dfrac{2L^2}3

a_n=\displaystyle\frac1L\int_{-L}^Lf(x)\cos nx\,\mathrm dx

Two successive rounds of integration by parts (I leave the details to you) gives an antiderivative of

\displaystyle\int(x-x^2)\cos nx\,\mathrm dx=\frac{(1-2x)\cos nx}{n^2}-\dfrac{(2+n^2x-n^2x^2)\sin nx}{n^3}

and so

a_n=-\dfrac{4L\cos nL}{n^2}+\dfrac{(4-2n^2L^2)\sin nL}{n^3}

So the cosine series for f(x) periodic over an interval [-L,L] is

f_C(x)=-\dfrac{L^2}3+\displaystyle\sum_{n\ge1}\left(-\dfrac{4L\cos nL}{n^2L}+\dfrac{(4-2n^2L^2)\sin nL}{n^3L}\right)\cos nx
4 0
3 years ago
Other questions:
  • Which expression is equivalent to the following?
    9·2 answers
  • HELP!! please explain how you got the answer too.
    7·2 answers
  • The value of 8 in 5.18 is. of the value of 8 in 5.81
    12·2 answers
  • Is the absolute value symbol another form of parentheses that all operations on the outside of the symbols be distributed into t
    6·2 answers
  • How many unique triangles can be drawn with side lengths 8 in., 12 in., and 24 in.? Explain.
    8·1 answer
  • The circumference of a circle is 20 pi meters. What is the area?
    12·1 answer
  • Pls help ASAP if you can please
    8·1 answer
  • Please help my brain isn’t working
    14·1 answer
  • Please help me with this question
    14·1 answer
  • Sales Hester sells televisions. She earns a fixed amount for each television and an additional $20 if the buyer gets an extended
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!