1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
quester [9]
3 years ago
15

an object weighting 100g is thrown upwards from the ground at a speed of 100 m/s.where will the potential energy of the object b

e two thirds of the kinetic energy?
Physics
1 answer:
Kay [80]3 years ago
3 0

Answer:

333.3 m

Explanation:

Given

m =100g\ =\  0.1kg\\v = 100 m/s\\g = 10 m/s ^2

Potential energy =\frac{2}{3}\  of\  Kinetic\  energy......Equation(1)

We know that

Potential energy=mgh

Kinetic energy =\frac{1}{2} mv^{2}

Now From the Equation(1)

mgh=\frac{2}{3}*\frac{1}{2} mv^{2}\\  gh=\frac{v^{2} }{3} \\10 * h=\ \frac{10000}{3}\\ h=\ \frac{1000}{3} \\h=333.3\  m

You might be interested in
Prisms separate <br> light, such as that from the Sun, by wavelength
SVETLANKA909090 [29]
Sorry I'm so late, but I just took this test and the answer is white (for people who didn't study well ;) )
6 0
3 years ago
What type of material is good at transferring heat?
MatroZZZ [7]
The answer is A

Materials that are good conductors of thermal energy are called thermal conductors. Metals are very good thermal conductors. Materials that are poor conductors of thermal energy are called thermal insulators. Gases such as air and materials such as plastic and wood are thermal insulators
5 0
3 years ago
Why do the waves have different speeds in different layers of Earth's surface?
Genrish500 [490]

Answer:

Material's density

Explanation:

Seismic waves travel at different rates of speed based on a material's density. Hopefully, you understand that the Earth has three main layers: the crust, mantle, and core. Earthquake waves move faster through solids.

6 0
2 years ago
Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?
worty [1.4K]

Answer:Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?

A. Reducing its mass to one-half of its original value

B. Increasing its velocitato twice its original value

C. Reducing its velocity to one-half of its original value O

D. Increasing its mass to twice its original value ​Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?

A. Reducing its mass to one-half of its original value

B. Increasing its velocitato twice its original value

C. Reducing its velocity to one-half of its original value O

D. Increasing its mass to twice its original value ​Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?

A. Reducing its mass to one-half of its original value

B. Increasing its velocitato twice its original value

C. Reducing its velocity to one-half of its original value O

D. Increasing its mass to twice its original value ​Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?

A. Reducing its mass to one-half of its original value

B. Increasing its velocitato twice its original value

C. Reducing its velocity to one-half of its original value O

D. Increasing its mass to twice its original value ​Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?

A. Reducing its mass to one-half of its original value

B. Increasing its velocitato twice its original value

C. Reducing its velocity to one-half of its original value O

D. Increasing its mass to twice its original value ​Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?

A. Reducing its mass to one-half of its original value

B. Increasing its velocitato twice its original value

C. Reducing its velocity to one-half of its original value O

D. Increasing its mass to twice its original value ​Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?

A. Reducing its mass to one-half of its original value

B. Increasing its velocitato twice its original value

C. Reducing its velocity to one-half of its original value O

D. Increasing its mass to twice its original value ​Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?

A. Reducing its mass to one-half of its original value

B. Increasing its velocitato twice its original value

C. Reducing its velocity to one-half of its original value O

D. Increasing its mass to twice its original value ​Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?

A. Reducing its mass to one-half of its original value

B. Increasing its velocitato twice its original value

C. Reducing its velocity to one-half of its original value O

D. Increasing its mass to twice its original value ​Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?

A. Reducing its mass to one-half of its original value

B. Increasing its velocitato twice its original value

C. Reducing its velocity to one-half of its original value O

D. Increasing its mass to twice its original value ​Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?

A. Reducing its mass to one-half of its original value

B. Increasing its velocitato twice its original value

C. Reducing its velocity to one-half of its original value O

D. Increasing its mass to twice its original value ​Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?

A. Reducing its mass to one-half of its original value

B. Increasing its velocitato twice its original value

C. Reducing its velocity to one-half of its original value O

D. Increasing its mass to twice its original value ​Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?

A. Reducing its mass to one-half of its original value

B. Increasing its velocitato twice its original value

C. Reducing its velocity to one-half of its original value O

D. Increasing its mass to twice its original value ​Questlon 20 of 20 Which change to an object would quadruple its kinetic energy?

Explanation:

6 0
3 years ago
Read 2 more answers
Convert to the fractional equivalent and reduce 21.12
nignag [31]

The decimal point is placed after two digits starting from the end. For each decimal place, we can write the number divided by 100.

21.12 can be written as \frac{2112}{100}.

Divide the numerator and denominator by 2:

\frac{2112}{100}= \frac{156}{50}

The numerator and denominator can be divided by 2 again:

\frac{78}{25}

There is no other common factor between numerator and denominator other than 1. Hence, it is the reduced form.




3 0
3 years ago
Read 2 more answers
Other questions:
  • Why isn’t a bird sitting on a high-voltage power line electrocuted? Contrast this with the situation in which a large bird hits
    5·2 answers
  • A 1200 kg car accelerates from 0 m/s to 25 m/s in 10 seconds. how much work was done on the car by the net force?
    10·1 answer
  • What do hydrogen and helium have in common?
    5·1 answer
  • What is the average velocity of a rocket that travels 15 m in 0.25 seconds?​
    9·1 answer
  • Suppose you want to to double a copper wire's resistance. To what temperature, in degrees Celsius, must you raise it if it is or
    7·1 answer
  • A rope has one end tied to a vertical support. You hold the other end so that the rope is horizontal. If you move the end of the
    15·2 answers
  • A small car and a large heavier bus are traveling at the same speed. Which has more momentum?
    14·1 answer
  • Excessive washing of the skin disrupts the natural growth of bacteria on the skin's surface, increasing the
    8·2 answers
  • Planet X has a moon similar to Earth’s moon.<br><br> Which path would this moon’s orbit take?
    12·1 answer
  • A current magnetic relay is often used to assist in the starting of the compressor, but most new appliances use a(n) ___________
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!