Answer:
a = 8 m/s^2, Ffriction = 10 N, μk = 0.205
Explanation:
a. Force = Mass*Acceleration,
(since you didn't add the units..."5 block"....for the mass, I will assume it to be in kg, per SI units)
40 N = 5 kg*acceleration,
a = 40/5 = 8 m/s^2
b. As you know newtons second law (F=m*a) is actually in the form Fnet = m*a. Which means that if the friction force comes into play, it would be Fapplied - Ffriction = m*a.
Fapplied - Ffriction = m*a,
40 - Ffriction = 5*6,
40 - Ffriction = 30,
Ffriction = 40 - 30 = 10 N
c. The coefficient of kinetic friction is calculated by the formula "Ffriction = μk*Fnormal".
10 = μk*Fnormal (Fnormal = m*g = 5*9.8)
10 = μk*49,
μk=10/49 ≈ 0.205
Answer:
A unit is represented in kWH or Kilowatt Hour. This is the actual electricity or energy used. If you use 1000 Watts or 1 Kilowatt of power for 1 hour then you consume 1 unit or 1 Kilowatt-Hour (kWh) of electricity.
Answer:
81.6 m
Explanation:
Answer: 81.6 m.
The time it takes gravity to slow 40 m/s to zero when it teaches maximum height is
-v(initial) / -g = t
-40 m/s / -9.8 m/s^2 = 4.08 s
The height reached is the average velocity times this time 4.08 s, with v(avg) = [v(initial) + v(final)] / 2 with v(final) = 0. v(avg) = v(initial) / 2 = 40 m/s / 2 = 20 m/s.
So the distance d of maximum height is
d = v(avg)•t
d = 20 m/s • 4.08 s = 81.6 m.
Answer:
C-less than
Explanation:
Distance is total distance traveled (1000m here if you stop where you started).
Displacement is your final distance from where you started (0m if you stop where you started).
0m<1000m
When you are in free fall, the force of gravity is stronger than your velocity perpendicular to where you're falling, and you move at a constant speed downwards.
Under feelings of weightlessness, you are still being pulled by gravity, but your perpendicular velocity and distance from the source can cancel each other out.