Answer:
conductivity of solution is reduced.
Explanation:
When two oppositely charged electrodes are immersed in a solution, positively charged ions are attracted to the negative electrode and gain electrons. The negatively charged ions are attracted to the positive electrode and release electrons.
Due to the process mentioned above , the negatively charged ions are accumulated at the positive electrode and the positively charged ions are accumulated at the negative electrode . This accumulation prevents further attraction of ions at oppositely charged electrodes because the incoming ions face repulsion from already accumulated ions at electrodes. Further , it creates an emf acting in opposite direction . It reduces the current through the solution. Hence conductivity of solution is reduced.
Answer: 16.3 seconds
Explanation: Given that the
Initial velocity U = 80 ft/s
Let's first calculate the maximum height reached by using third equation of motion.
V^2 = U^2 - 2gH
Where V = final velocity and H = maximum height.
Since the toy is moving against the gravity, g will be negative.
At maximum height, V = 0
0 = 80^2 - 2 × 9.81 × H
6400 = 19.62H
H = 6400/19.62
H = 326.2
Let's us second equation of motion to find time.
H = Ut - 1/2gt^2
Let assume that the ball is dropped from the maximum height. Then,
U = 0. The equation will be reduced to
H = 1/2gt^2
326.2 = 1/2 × 9.81 × t^2
326.2 = 4.905t^2
t^2 = 326.2/4.905
t = sqrt( 66.5 )
t = 8.15 seconds
The time it will take for the rocket to return to ground level will be 2t.
That is, 2 × 8.15 = 16.3 seconds
solution:
radius of steel ball(r)=5cm=0.05m
density of ball =8000kgm
terminal velocity(v)=25m/s^2
density of air( d) =1.29 kgm
now
volume of ball(V)=4/3pir^3=1.33×3.14×0.05^3=0.00052 m^3
density of ball= mass of ball/Volume of ball
or, 8000=m/0.00052
or, m=4.16 kg
weight of the ball (W)= mg=4.16×10=41.6 N
viscous force(F)=6 × pi × eta × r × v
=6×3.14×eta×0.05×25
=23.55×eta
To attain the terminal velocity,
Fiscous force=Weight
or, 23.55× eta = 41.6
or, eta = 1.76
whete eta is the coefficient of viscosity.
By definition, the gain in PE (potential energy) is
ΔPE = m*g*h
Given:
mg = 40 N (Note that m*g = weight)
h = 5 m
ΔPE = (40 N)*(5 m) =200 J
Answer: 200 J