Its both A and C because both A and C have only one type each so it can only be those two :)
Answer:
See explanation
Explanation:
For this question, we have to remember the effect of an atom with high <u>electronegativity</u> as "Br". If the "Br" atom is closer to the carboxylic acid group (COOH) we will have an <u>inductive effect</u>. Due to the electronegativity of Br, the electrons of the C-H bond would be to the Br, then this bond would be <u>weaker</u> and the compound will be more acid (because is easier to produce the hydronium ion
).
With this in mind, for A in the last compound, we have <u>2 Br atoms</u> near to the acid carboxylic group, so, we will have a high inductive effect, then the C-H would be weaker and we will have <u>more acidity</u>. Then we will have the compound with only 1 Br atom and finally, the last compound would be the one without Br atoms.
In B, the difference between the molecules is the <u>position</u> of the "Br" atom in the molecule. If the Br atom is closer to the acid group we will have a <u>higher inductive effect</u> and more <u>acidity</u>.
See figure 1
I hope it helps!
Answer:
The correct answer would be - c. A solid was added to water and the mixture was stirred until the solid was no longer visible
Explanation:
Photostabalizing is the process where a solid change its color in the presence of ultraviolet light, it is a chemical change, so the first option would not be the correct answer.
when two liquid or aqueous solutions are mixed together and form a solid substance, this reaction is known as precipitation and it is a chemical reaction too.
When a solid is placed in a liquid and after stirring it makes the solid vanish is a physical change known as dissolving character.
Thus, the correct answer is option C.
Tbh I would pick A because the liquid* decreases. B doesn’t increase
Step 1: write the equation:
P₄(s) + 6F₂(g) → 4PF₃(g)
Step 2: Molar mass of P₄ = 30.97 g/mol × 4 = 123.88 g/mol
Step 3: Number of moles of phosphorus
n = m/M
n = 8.5 g/123.88g/mol
n = 0.07 moles
Step 4: 0.07 × 12 = 0.84 moles of fluorine.
Fluorine is diatomic gas so we multiplied the number of moles by 12.
Step 5: To find the mass of fluorine we multiply the number of moles with the molar mass.
Mass of fluorine = 0.84 × 228
= 191.52 grams.