1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
oksano4ka [1.4K]
3 years ago
12

Determine all real values of p such that the set of all linear combination of u = (3, p) and v = (1, 2) is all of R2. Justify yo

ur answer.
Mathematics
1 answer:
Rama09 [41]3 years ago
7 0

Answer:

p ∈ IR - {6}

Step-by-step explanation:

The set of all linear combination of two vectors ''u'' and ''v'' that belong to R2

is all R2 ⇔

u\neq 0_{R2}      

v\neq 0_{R2}

And also u and v must be linearly independent.

In order to achieve the final condition, we can make a matrix that belongs to R^{2x2} using the vectors ''u'' and ''v'' to form its columns, and next calculate the determinant. Finally, we will need that this determinant must be different to zero.

Let's make the matrix :

A=\left[\begin{array}{cc}3&1&p&2\end{array}\right]

We used the first vector ''u'' as the first column of the matrix A

We used the  second vector ''v'' as the second column of the matrix A

The determinant of the matrix ''A'' is

Det(A)=6-p

We need this determinant to be different to zero

6-p\neq 0

p\neq 6

The only restriction in order to the set of all linear combination of ''u'' and ''v'' to be R2 is that p\neq 6

We can write : p ∈ IR - {6}

Notice that is p=6 ⇒

u=(3,6)

v=(1,2)

If we write 3v=3(1,2)=(3,6)=u , the vectors ''u'' and ''v'' wouldn't be linearly independent and therefore the set of all linear combination of ''u'' and ''b'' wouldn't be R2.

You might be interested in
The 5th grade students at Fox Middle School went to a movie. They spent a total of $1357.50 on movie tickets. If each movie tick
Nesterboy [21]
Your answer needs to be at least 20 characters long!
6 0
2 years ago
A 2-column table with 3 rows. Column 1 is labeled Number of Rows with entries 1, 3, 5. Column 2 is labeled Number of Seats with
Mnenie [13.5K]

Answer:

  • 30

Step-by-step explanation:

One row has 6 seats

<u>3 rows have:</u>

  • 3*6 = 18 seats

<u>5 rows have:</u>

  • 5*6 = 30 seats

A = 30

4 0
2 years ago
Read 2 more answers
(4) (5) Geometry help
MissTica
For the first part, the answer is choice B) 360. This applies to any polygon and it doesn't have to be an octagon. The sum of the exterior angles of any polygon is always 360 degrees. This is something you should memorize or have on a reference sheet.

For the second part, the answer is choice C) 142 degrees. We have a parallelogram (specifically a rhombus but that doesn't matter) so the adjacent angles are supplementary. This means they add to 180 degrees. Solving x+38 = 180 leads to x = 142
5 0
3 years ago
If m∠c=11x+85/3 and x=13 then what type of angle is c please help me with this
GuDViN [60]

Answer:

Acute angle

Step-by-step explanation:

Given that m<C = \frac{11x + 85}{3}, to find out the type of angle angle C is, evaluate the expression given by substituting x = 13, in the expression.

m<C = \frac{11x + 85}{3}

m<C = \frac{11(13) + 85}{3}

m<C = \frac{228}{3}

m<C = 76°

Acute angles are less than 90°.

m<C is less than 90°, therefore it is an acute angle.

5 0
3 years ago
3 is to 14 as 12 is to what number?<br><br> O 3.5<br> O 2.6<br> O 42<br> O 56
snow_tiger [21]
12 is to 56 is the correct answer or just option D lol :)
6 0
2 years ago
Read 2 more answers
Other questions:
  • Write 6,000,370 in scientific notation.
    9·1 answer
  • What is 10% on sale for sale on $ 37.89
    11·1 answer
  • Which choice is equivalent to the quotient shown here for values of x?
    7·1 answer
  • What is the positive solution to the equation 0=1/3 x^2 -3
    15·1 answer
  • Please + brainliesting.
    11·1 answer
  • Need help immediately I will give brainilest
    12·2 answers
  • What is the correct transformation shown!?
    5·1 answer
  • Help i need itbdbdbdbsb
    15·1 answer
  • Find the number. 1.5 of 20
    13·2 answers
  • Find the asymptotes of the graph of the function. Select all that apply.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!