Boron’s chemistry is not typical of its group. is group 3A (13) shows the increasing metallic character from Al to Tl.
All Boron compounds are covalent whereas the other elements in group 3A (13) form mostly ionic compounds.
Except for Boron, the other elements of group 3A (13) show increasing metallic character from Al to Tl. But Boron is a metalloid.
Compared to the other elements in group 3A, boron has a lower reactivity in chemical terms (13)
The metalloid boron (B), as well as the metals aluminium (Al), gallium (Ga), indium (In), and thallium, are all part of group 3A (or IIIA) of the periodic table (Tl). In contrast to the other members of Group 3A, the element borax primarily forms covalent connections.
To learn more about group 3A (13) refer the link:
brainly.com/question/5489194
#SPJ4
C. the denser the plants the better.
Answer:
C
The molarity of Barium Hydroxide is 0.289 M.
<u>Explanation:</u>
We have to write the balanced equation as,
Ba(OH)₂ + 2 HNO₃ → Ba(NO₃)₂ + 2 H₂O
We need 2 moles of nitric acid to react with a mole of Barium hydroxide, so we can write the law of volumetric analysis as,
V1M1 = 2 V2M2
Here V1 and M1 are the volume and molarity of nitric acid
V2 and M2 are the volume and molarity of Barium hydroxide.
So the molarity of Ba(OH)₂, can be found as,

= 0.289 M
Answer : The net ionic equation will be:

Explanation :
Complete ionic equation : In complete ionic equation, all the substance that are strong electrolyte and present in an aqueous are represented in the form of ions.
Net ionic equation : In the net ionic equations, we are not include the spectator ions in the equations.
Spectator ions : The ions present on reactant and product side which do not participate in a reactions. The same ions present on both the sides.
The balanced molecular equation will be,

The complete ionic equation in separated aqueous solution will be,

In this equation the species,
are the spectator ions.
By removing the spectator ions , we get the net ionic equation.
The net ionic equation will be:
