When placed in a container, the heaviest (most dense) will sink to the bottom and the lightest (least dense) will rise to the top.
Therefore, Gasoline would rise to the top.
Answer:
amusement parks. Each day, we flock by the millions to the nearest park, paying a sizable hunk of money to wait in long lines for a short 60-second ride on our favorite roller coaster. The thought prompts one to consider what is it about a roller coaster ride that provides such widespread excitement among so many of us and such dreadful fear in the rest? Is our excitement about coasters due to their high speeds? Absolutely not! In fact, it would be foolish to spend so much time and money to ride a selection of roller coasters if it were for reasons of speed. It is more than likely that most of us sustain higher speeds on our ride along the interstate highway on the way to the amusement park than we do once we enter the park. The thrill of roller coasters is not due to their speed, but rather due to their accelerations and to the feelings of weightlessness and weightiness that they produce. Roller coasters thrill us because of their ability to accelerate us downward one moment and upwards the next; leftwards one moment and rightwards the next. Roller coasters are about acceleration; that's what makes them thrilling. And in this part of Lesson 2, we will focus on the centripetal acceleration experienced by riders within the circular-shaped sections of a roller coaster track. These sections include the clothoid loops (that we will approximate as a circle), the sharp 180-degree banked turns, and the small dips and hills found along otherwise straight sections of the track.
What we are give: Concentration of base (CB) = 3.4 ×

Then convert all volume in ml to L.
Volume of base (VB) 25.0ml = 0.025L
Volume of acid (VA) 16.6ml = 0.0166L
Now that we have everything we use the formula CAVA=CBVB.
Make 'CA' the subject then solve.
CA=
Answer:
ΔS surrounding (entropy change of the reservoir) = -1 J/K
Explanation:
Given:
Change in heat (ΔH) = 150 joules
Temperature (T) = 150 K
Find:
ΔS surrounding (entropy change of the reservoir)
Computation:
ΔS surrounding (entropy change of the reservoir) = - ΔH / T
ΔS surrounding (entropy change of the reservoir) = - 150 / 150
ΔS surrounding (entropy change of the reservoir) = -1 J/K
More than likely, your seeing a chemical reaction. The bubbles that are forming are caused by two compounds interacting with each other.