I hope this helps you
Volume = height. width. length
340=5.width.17
width =340/17.5
width = 4
Answer:
Option b
Step-by-step explanation:
We have a compound interest problem. With an annual interest rate of 0.675 and an initial payment of 8500, with t = 25 years
Then you must use the annual compound interest formula, which is represented by a growing exponential function:
![y = e ^{ht}](https://tex.z-dn.net/?f=y%20%3D%20e%20%5E%7Bht%7D)
Where:
h is the interest rate of 0.675
y is the money in the savings account as a function of time
Then substitute the values in the formula and we have:
![y = e ^{0.675(25)}](https://tex.z-dn.net/?f=y%20%3D%20e%20%5E%7B0.675%2825%29%7D)
![y = 45,950.57](https://tex.z-dn.net/?f=y%20%3D%2045%2C950.57)
Answer:
65
Step-by-step explanation:
Answer:
The following are the answer to this question:
Step-by-step explanation:
In the given question the numeric value is missing which is defined in the attached file please fine it.
Calculating the probability of the distribution for x:
![\to f(x) = 0.19\ for \ x=14\\\\\to f(x) = 0.29 \ for\ x=7\\\\\to f(x) = 0.38\ for \ x=1\\\\\to f(x)=0.14 \ for \ x=0\\](https://tex.z-dn.net/?f=%5Cto%20f%28x%29%20%3D%200.19%5C%20%20for%20%5C%20x%3D14%5C%5C%5C%5C%5Cto%20%20f%28x%29%20%3D%200.29%20%5C%20for%5C%20x%3D7%5C%5C%5C%5C%5Cto%20f%28x%29%20%3D%200.38%5C%20%20for%20%5C%20x%3D1%5C%5C%5C%5C%5Cto%20f%28x%29%3D0.14%20%5C%20for%20%5C%20x%3D0%5C%5C)
The formula for calculating the mean value:
![\bold{ E(X)= x \times f(x)}](https://tex.z-dn.net/?f=%5Cbold%7B%20E%28X%29%3D%20x%20%5Ctimes%20f%28x%29%7D)
![=14 \times 0.19+7 \times 0.29+1 \times 0.38+0\times 0.14\\\\=2.66 + 2.03+0.38+ 0\\\\=5.07](https://tex.z-dn.net/?f=%3D14%20%5Ctimes%200.19%2B7%20%5Ctimes%200.29%2B1%20%5Ctimes%200.38%2B0%5Ctimes%200.14%5C%5C%5C%5C%3D2.66%20%2B%202.03%2B0.38%2B%200%5C%5C%5C%5C%3D5.07)
![\bold{E(X^2) = x^2 \times f(x)}](https://tex.z-dn.net/?f=%5Cbold%7BE%28X%5E2%29%20%3D%20x%5E2%20%5Ctimes%20f%28x%29%7D)
![=14^2 \times 0.19+7^2 \times 0.29+1^2 \times 0.38+0^2 \times 0.14 \\\\=196 \times 0.19+ 49 \times 0.29+1 \times 0.38+0 \times 0.14\\\\= 37.24+ 14.21+ 0.38+0 \\\\=51.83](https://tex.z-dn.net/?f=%3D14%5E2%20%5Ctimes%200.19%2B7%5E2%20%5Ctimes%200.29%2B1%5E2%20%5Ctimes%200.38%2B0%5E2%20%5Ctimes%200.14%20%5C%5C%5C%5C%3D196%20%5Ctimes%200.19%2B%2049%20%5Ctimes%200.29%2B1%20%5Ctimes%200.38%2B0%20%5Ctimes%200.14%5C%5C%5C%5C%3D%2037.24%2B%2014.21%2B%200.38%2B0%20%5C%5C%5C%5C%3D51.83)
use formula for calculating the Variance:
![\to \bold{\text{Variance}= E(X^2) -[E(X)]^2}](https://tex.z-dn.net/?f=%5Cto%20%5Cbold%7B%5Ctext%7BVariance%7D%3D%20E%28X%5E2%29%20-%5BE%28X%29%5D%5E2%7D)
![= 51.83 - (5.07)^2\\\\= 51.83 - 25.70\\\\=26.13](https://tex.z-dn.net/?f=%3D%2051.83%20-%20%285.07%29%5E2%5C%5C%5C%5C%3D%2051.83%20-%20%2025.70%5C%5C%5C%5C%3D26.13)
calculating the value of standard deivation:
Standard Deivation (SD) =
![= \sqrt{26.13} \\\\=5.111](https://tex.z-dn.net/?f=%3D%20%5Csqrt%7B26.13%7D%20%5C%5C%5C%5C%3D5.111)