Answer:
10.8 days (3 sig.figs.)
Explanation:
All radioactive decay is 1st order decay defined by the expression A = A₀e^-kt
which is solved for time of decay (t) => t = ln(A/A₀) / -k
A = final weight = 1.0 gram
A₀ = initial weight = 16.0 grams
k = rate constant = 0.693/t(1/2) = 0.693/2.69 days = 0.258 days⁻¹
t = ln(1/16) / -0.258da⁻¹ = (-2.77/-0.258) days = 10.74646792 days (calculator)
≅ 10 days (1 sig. fig. based on given 1 gram mass)
A low specific heat capacity
Answer:
both
Explanation:
Carbon in the air around the living thing is moving in and out of its lungs. The movement is occurring at the same time. This is one of the most important gaseous exchange important to life.
- The goats takes in oxygen gas from the surrounding and releases carbon dioxide in the process.
- But, air is actually drawn in by the goat which is a mixture of several gases.
- Air contains carbon dioxide which is a rich source of carbon
- With the carbon dioxide from respiratory processes, the goat ejects and breathes out this waste carbon matter.
- Therefore, the gaseous exchange in a goat involves the movement of carbon in and out of the air.
Answer:
Option D. Al is above H on the activity series.
Explanation:
The equation for the reaction is given below:
2Al + 6HBr —> 2AlBr₃ + 3H₂
The activity series gives us a background understanding of the reactivity of elements i.e how elements displace other elements when present in solution.
From the activity series of metals, we understood that metal higher in the series will displace those lower in the series.
Considering the equation given above, Al is higher than H in the activity series. Thus, the reaction will proceed as illustrated by the equation.
Therefore, we can conclude that the reaction will only occur if Al is higher than H in the activity series.
Answer: 95 degrees fahrenheit hope this helps :]
Explanation: