The dependent variable is plant height.
The <em>dependent variable</em> (plant height) is the <em>property that changes</em> as a result something the scientist does.
The <em>independent variable</em> is the <em>property that the scientist changes</em> systematically (the amount of CO_2) to see its effect.
The <em>number of plants</em> and the <em>types of plants</em> are <em>uncontrolled variables</em>. They may or may not affect the heights of the plants.
Answer:
The answer to your question is: 58.4 g of NaCl
Explanation:
Data
Volume = 200 ml = 0.2 l
Concentration = 5M
MW = 58.4 g
mass NaCl = ?
Formula
Molarity = (# of moles ) / volume
# of moles = Molarity x volume
# of moles = 5 x 0.2
# of moles = 1
58.4 g ---------------------- 1 mol
x --------------------- 1 mol
x = (1 x 58.4) / 1
x = 58.4 g of NaCl
please provide full questions
1. Magnesium atoms also have a slightly smaller radius than sodium atoms, and so the delocalised electrons are closer to the nuclei.
2. Sodium has higher melting point than potassium because of stronger metallic bonding .
3. Potassium are very soft metal can be very easily cut with a knife
4. Increase of resistance in metals. Therefore the mobility of electrons decreases and causes decrease in conductivity.
5.To increase strength, increase corrosion resistance, or reduce costs.
6. All metals have low ionization energies and are relatively electropositive, and so they lose electrons fairly easily.
7. All the group 1 metals are reactive, but they get more reactive as you go down the group, so potassium is more reactive than sodium.
People had asked this many times and that is why they came up with methods and standards that will answer these type of questions. You can look it up in the NIST or the National Institute for Standards and Technology.