Answer:
1. Force = mass x acceleration - Newton
2. A planet moves faster in the part of its orbit nearer the Sun and slower when farther from the Sun, sweeping out equal areas in equal times - Kepler
3. For any force, there is an equal and opposite reaction force - Newton
.
4. An object moves at constant velocity if there is no net force acting upon it - Newton
5. The orbit of each planet about the Sun is an ellipse with the Sun at one focus - Kepler.
6. More distant planets orbit the Sun at slower average speeds, obeying the precise mathematical relationship p2-a3 - Kepler.
Explanation:
The three laws of planetary motion formulated by Johannes Kepler or Kepler's laws of planetary motion:
- The first law states that the planets move around the Sun in an elliptical orbit with the Sun at one of the foci.
- The second law states that the line segment joining a planet to the Sun sweeps out equal areas in equal time.
- The third law states that the square of the orbital period (p) of a planet is directly proportional to the cube of the mean distance (a) from the Sun (or semi-major axis of its orbit) i.e., p² is proportional to a³.
The three laws of motion formulated by Sir Isaac Newton or Newton's laws of motion:
- The first law, also known as the law of inertia states that an object at rest or moves at a constant velocity will remain at rest or keep moving at a constant velocity unless it is acted upon by a force.
- The second law states that the total force (F) applied on an object is directly related to the acceleration (a) of that object produced by the applied force and the mass (m) of the object, i.e., F = ma (assuming the mass m is constant).
- The third law, also known as the law of action and reaction states that when an object exerts a force on another object, then the latter exerts a force equal in magnitude and opposite in direction on the former object i.e., for every action, there is an equal and opposite reaction. The example includes the recoiling of a gun when it fires a bullet forward.
Since they are made of different chemical make ups, boiling point and density they will most likely be in different groups on the periodic table.
The final temperature of the system will be equal to the initial temperature, and which is 373K. The work done by the system is 409.8R Joules.
To find the answer, we need to know about the thermodynamic processes.
<h3>How to find the final temperature of the gas?</h3>
- Any processes which produce change in the thermodynamic coordinates of a system is called thermodynamic processes.
- In the question, it is given that, the tank is rigid and non-conducting, thus, dQ=0.
- The membrane is raptured without applying any external force, thus, dW=0.
- We have the first law of thermodynamic expression as,

,

- Thus, the final temperature of the system will be equal to the initial temperature,

<h3>How much work is done?</h3>
- We found that the process is isothermal,
- Thus, the work done will be,

Where, R is the universal gas constant.
<h3>What is a reversible process?</h3>
- Any process which can be made to proceed in the reverse direction is called reversible process.
- During which, the system passes through exactly the same states as in the direct process.
Thus, we can conclude that, the final temperature of the system will be equal to the initial temperature, and which is 373K. The work done by the system is 409.8R Joules.
Learn more about thermodynamic processes here:
brainly.com/question/28067625
#SPJ1
Answer:
c. Light energy to thermal energy
Explanation:
The energy from the sun comes in the form of light energy but is converted to thermal energy.
Laurentia, also called the North American Craton, is a huge continental craton. It<span> forms the ancient </span>geological<span> core of the </span>continent of North America.<span> It is made up of present day North America and Greenland. About 300 million years ago, it collided with the southern hemispheric continent of </span>Gondwana<span> and formed the supercontinent called Pangaea.</span><span> </span>