Ridges, mountains, and volcanoes!
Answer:
a

b

c

Explanation:
From the question we are told that
The frequency is 
The length of the vibrating string is 
The mass is 
Generally the wavelength is mathematically represented as

=> 
=> 
Generally the wave speed is

=> 
=> 
Generally the tension on the wire is mathematically represented as

=> 
=> 
Explanation:
Given data:
d = 30 mm = 0.03 m
L = 1m
S
= 70 Mpa
Δd = -0.0001d
Axial force = ?
validity of elastic deformation assumption.
Solution:
O'₂ = Δd/d = (-0.0001d)/d = -0.0001
For copper,
v = 0.326 E = 119×10³ Mpa
O'₁ = O'₂/v = (-0.0001)/0.326 = 306×10⁶
∵δ = F.L/E.A and σ = F/A so,
σ = δ.E/L = O'₁ .E = (306×10⁻⁶).(119×10³) = 36.5 MPa
F = σ . A = (36.5 × 10⁻⁶) . (π/4 × (0.03)²) = 25800 KN
S
= 70 MPa > σ = 36.5 MPa
∵ elastic deformation assumption is valid.
so the answer is
F = 25800 K N and S
> σ
Answer:
The only parameter that changes is mass m
It is only necessary to calculate the ratio Eh/Ee

The kinetic energy of the heavy paricle is three times the kinetic energy of an electron
Sup Milk,
Sublimation = Energy is absorbed and a solid turns to a gas.
Condensation = Energy is released and a gas changes to a liquid.
Evaporation = Energy is absorbed into a liquid to turn it into a gas.