Answer: Gamma rays, x-rays, ultraviolet rays, visible light, and infrared rays.
Answer:
Explanation:
Mass of ball Is m=96.1g=0.0961kg
Height above spring is 59.1cm
L=0.591m
Extension of the spring is 4.75403cm
e=0.0475403m
Then the distance the ball traveled is H=L+e
H=0.591+0.0475403
H=0.6385403m
Then, the potential energy of the ball is given as
P.E=mgh
P.E=0.0961×9.81×0.6385403
P.E=0.602J
From conservation of energy, energy cannot be created nor destroy but can be transferred from one form to another
Then, the P.E is transferred to the work done by the spring
Then, Work done by spring is given as
W=½ke²
W=P.E=½×k×0.0475403²
0.602=½×k×0.0475403²
k=0.602×2/0.0475403²
k=532.72N/m
The spring constant is 532.72 N/m
The breaking distance consists of two parts. The first part is the first 0.5 seconds were no breaking occurs. Given values: t time, v₀ initial velocity:
x₁ = v₀*t
The second part occurs after t = 0,5s with the given acceleration: a = - 12 m/s²
were the final velocity is zero, v = 0 and the initial velocity v₀= 16m/s:
v = a*t + v₀ = 0 => v₀ = -a*t => t = v₀/-a
x₂ = 0.5*a*t² = 0.5*v°²/a
The total breaking distance is the sum of the two parts:
x = x₁ + x₂ = v₀* t + 0.5 * v₀² / a = 16 * 0.5 + 0.5 * 16² / 12 = 8 + 10,7 = 18,7
You can use this result to calculate the remaining distance. You can use the last equation to calculate the maximum speed you could have to avoid a collision.
Use x = 39m and solve for v₀.
Answer:
i. The pressure of due to the water, <em>P</em>, is given according to the following equation;
P = ρ·g·h
Where;
ρ = The density of the water (a constant) = 997 kg/m³
g = The acceleration due to gravity = 9.81 m/s²
h = The height of the water (minimum h = h₁, maximum h = h₂)
The pressure is directly proportional to the water height, and we have;
The pressure, <em>P</em>, will be maximum when the water height, <em>h</em>, is maximum or h = h₂, which is the level DC
ii. The thrust = The force acting on the body = Pressure × Area
The maximum areas exposed to the water are on side AB and DC
However, the pressure at level DC, which is the location of the maximum pressure, is larger than the pressure at level AB, therefore, the maximum thrust will be at the level DC
Explanation: