Explanation:
Given parameters:
Distance hopped = 84m
Displacement = 84m due east
Time = 7s
Unknown:
Speed of kangaroo = ?
Velocity of kangaroo = ?
Solution:
To solve this problem,
Speed =
=
= 12m/s
Velocity =
=
= 12m/s due east
Mass is the physical quantity
Answer:
option (E) 1,000,000 J
Explanation:
Given:
Mass of the suspension cable, m = 1,000 kg
Distance, h = 100 m
Now,
from the work energy theorem
Work done by the gravity = Work done by brake
or
mgh = Work done by brake
where, g is the acceleration due to the gravity = 10 m/s²
or
Work done by brake = 1000 × 10 × 100
or
Work done by brake = 1,000,000 J
this work done is the release of heat in the brakes
Hence, the correct answer is option (E) 1,000,000 J
Answer:
Temperature of water leaving the radiator = 160°F
Explanation:
Heat released = (ṁcΔT)
Heat released = 20000 btu/hr = 5861.42 W
ṁ = mass flowrate = density × volumetric flow rate
Volumetric flowrate = 2 gallons/min = 0.000126 m³/s; density of water = 1000 kg/m³
ṁ = 1000 × 0.000126 = 0.126 kg/s
c = specific heat capacity for water = 4200 J/kg.K
H = ṁcΔT = 5861.42
ΔT = 5861.42/(0.126 × 4200) = 11.08 K = 11.08°C
And in change in temperature terms,
10°C= 18°F
11.08°C = 11.08 × 18/10 = 20°F
ΔT = T₁ - T₂
20 = 180 - T₂
T₂ = 160°F
Answer:
The angular velocity is 
Explanation:
From the question we are told that
The mass of each astronauts is 
The initial distance between the two astronauts 
Generally the radius is mathematically represented as 
The initial angular velocity is 
The distance between the two astronauts after the rope is pulled is 
Generally the radius is mathematically represented as 
Generally from the law of angular momentum conservation we have that

Here
is the initial moment of inertia of the first astronauts which is equal to
the initial moment of inertia of the second astronauts So

Also
is the initial angular velocity of the first astronauts which is equal to
the initial angular velocity of the second astronauts So

Here
is the final moment of inertia of the first astronauts which is equal to
the final moment of inertia of the second astronauts So

Also
is the final angular velocity of the first astronauts which is equal to
the final angular velocity of the second astronauts So

So

=> 
=> 
=> 
=> 