A wet-chemistry biochemical analyzer<span> was assessed for in-practice veterinary use. Its small size may mean a cost-effective method for low-throughput in-house biochemical analyses for first-opinion practice. The objectives of our study were to determine imprecision, total observed error, and acceptability of the </span>analyzer<span> for measurement of common canine and feline </span>serum<span> analytes, and to compare clinical </span>sample<span> results to those from a commercial reference </span>analyzer<span>. Imprecision was determined by within- and between-run repeatability for canine and feline pooled </span>samples<span>, and manufacturer-supplied quality control material (QCM). Total observed error (TEobs) was determined for pooled </span>samples<span> and QCM. Performance was assessed for canine and feline pooled </span>samples<span> by sigma metric determination. Agreement and errors between the in-practice and reference </span>analyzers<span> were determined for canine and feline clinical </span>samples<span> by Bland-Altman and Deming regression analyses. Within- and between-run precision was high for most analytes, and TEobs(%) was mostly lower than total allowable error. Performance based on sigma metrics was good (σ > 4) for many analytes and marginal (σ > 3) for most of the remainder. Correlation between the </span>analyzers<span> was very high for most canine analytes and high for most feline analytes. Between-</span>analyzer<span> bias was generally attributed to high constant error. The in-practice </span>analyzer<span> showed good overall performance, with only calcium and phosphate analyses identified as significantly problematic. Agreement for most analytes was insufficient for transposition of reference intervals, and we recommend that in-practice-specific reference intervals be established in the laboratory.</span>
Answer:
Ionic compound are when electrons are given to another element, making one atom positive and the other negative, so they attract. Covalent compound is when both atoms share electrons with each other.
Answer:
The density of ozone is 4.24.
Explanation:
The relation between the relative rate of diffusion and density is given by :

The given ratio of the relative rate of diffusion of ozone as compared to chlorine is 6:3.
Let the density of ozone is d₂.

So, the density of ozone is 4.24.
There are 4 significant figures! Start counting after the first non-zero digit :)
Hope this helps.
Bcz you’re able to wear something fresh, get a tan if you’d want, play volleyball or go out to swim in the cold ocean that feels so good when it’s hot !