Answer:
This one is easy. It's the Avogadros' Hypothesis or Avogadros' Law, where the equal volumes of gases in SAME conditions have an equal amount of molecules!
Answer:
0.0693M Fe
Explanation:
It is possible to quantify Fe in a sample using Mn as internal standard using response factor formula:
F = A(analyte)×C(std) / A(std)×C(analyte) <em>(1)</em>
Where A is area of analyte and std, and C is concentration.
Replacing with first values:
F = 1.05×2.00mg/mL / 1.00×2.50mg/mL
<em>F = 0.84</em>
In the unknown solution, concentration of Mn is:
13.5mg/mL × (1.00mL/6.00mL) = <em>2.25 mg Mn/mL</em>
Replacing in (1) with absorbances values and F value:
0.84 = 0.185×2.25mg/mL / 0.128×C(analyte)
C(analyte) = <em>3.87 mg Fe / mL</em>
As molarity is moles of solute (Fe) per liter of solution:
= <em>0.0693M Fe</em>
Answer:
No, there are some organisms that only have one cell, although there are organ systems that are made up of many cells. Not all organisms have organ systems.
Explanation:
For example, the Trichoplax. It is an animal with no organs that is tiny and multicellular, and only feeds on microalgae. A Trichoplax are flat organisms about a millimetre in diameter with no internal structures and typically have two cellular layers. These organisms live in the oceans and seas all around the world but are not necessarily found in their natural habitat, more so in captivity such as a marine aquarium. Trichoplax are found to live in symbiosis with such things as bacteria and others in the oceans and seas.
Answer:
The process of photosynthesis occurs when green plants use the energy of light to convert carbon dioxide (CO2) and water (H2O) into carbohydrates. Light energy is absorbed by chlorophyll, a photosynthetic pigment of the plant, while air containing carbon dioxide and oxygen enters the plant through the leaf stomata.
Answer:
Peatification and coalification
Explanation:
https://energyeducation.ca/encyclopedia/Coal_formation