<h3>
Answer:</h3>
134 atm
<h3>
Explanation:</h3>
- Based on the pressure law, the pressure of a gas varies directly proportionally to the absolute temperature at a constant volume.
- Therefore; we are going to use the equation;
In this case;
Initial pressure, P1 = 144 atm
Initial temperature, T1 (48°C) = 321 K
Final temperature, T2 (25°C) = 298 K
We need to find the final pressure,
Therefore;
P2 = (P1/T1)T2
= (144/321)× 298 K
= 133.68 atm
= 134 atm
Therefore, the new pressure will be 134 atm.
The third option because the elements mentioned in that selection are in the same group, they must have similar properties.
Complete Question:
To aid in the prevention of tooth decay, it is recommended that drinking water contain 0.800 ppm fluoride. How many grams of F− must be added to a cylindrical water reservoir having a diameter of 2.02 × 102 m and a depth of 87.32 m?
Answer:
2.23x10⁶ g
Explanation:
The concentration of the fluoride (F⁻) must be 0.800 ppm, which is 0.800 parts per million, so the water must have 0.800 g of F⁻/ 1000000 g of the solution. The density of the water at room temperature is 997 kg/m³ = 997x10³ g/m³. So, the concentration of the fluoride will be:
0.800 g of F⁻/ 1000000 g of the solution * 997x10³ g/m³
0.7976 g/m³
The volume of the reservoir is the volume of the cylinder: area of the base * depth. The base is a circumference, which has an area:
A = πR², where R is the radius = 1.01x10² m (half of the diameter)
A = π*(1.01x10²)²
A = 32047 m²
The volume is then:
V = 32047 * 87.32
V = 2.7983x10⁶ m³
The mass of the F⁻ is the concentration multiplied by the volume:
m = 0.7976 * 2.7983x10⁶
m = 2.23x10⁶ g
Actually, it could indeed be the independent variable.
738.1146 grams, your're welcome