One thing to notice in the question is, we are asked about molecular oxygen that has formula O2 not atomic oxygen O.
As we are asked about molecular oxygen, we will answer the question in terms of number of molecules that are present in 16 grams of molecular oxygen.
To get the number of molecules present in 16 grams of O2, we will use the formula:
No. of molecules = no. of moles x Avogadro's number (NA)----- eq 1)
As we know:
The number of moles = mass/ molar mass of molecule
Here we have been given mass already, 16 grams and the molar mass of O2 is 32 grams.
Putting the values in above formula:
= 16/32
= 0.5 moles
Putting the number of moles and Avogadro's number (6.02 * 10^23) in eq 1
No. of molecules = 0.5 x 6.02 * 10^23
=3.01 x 10^23 molecules
or 301,000,000,000,000,000,000,000 molecules
This means that 16 grams of 3.01 x 10^23 molecules of oxygen.
Hope it helps!
To determine the empirical formula and the molecular formula of the compound, we assume a basis of the compound of 100 g. We do as follows:
Mass Moles
K 52.10 52.10/39.10 = 1.33 1.33/1.32 ≈ 1
C 15.8 15.8/12 = 1.32 1.32/1.32 ≈ 1
O 32.1 32.1 / 16 = 2.01 2.01/1.32 ≈ 1.5
The empirical formula would most likely be KCO.
The molecular formula would be K2C2O3.
The ashes released from the volcano could lead to acid rain and ash clouds.
Answer:
The configuration of the atom would be 2-8-2.
Explanation:
Any atom of an element combines with other element to complete its octet and become stable.
The electron configuration of the given atom is 2-8-6. That means the atom has 6 electrons in its outermost shell. To become stable the atom should have 8 electrons in its outermost shell. The given atom has 6 electrons so it either lose 6 electrons or gain 2 electrons to complete its octet.
But we know the atom having 5,6,7 electrons in its outermost shell they do not lose, they gain either 3 or 2 or 1 electrons to complete its octet.
So we say that atom with the electron configuration 2-8-6 bond with the atom having electron configuration 2-8-2.