Answer: Energy of reactants = 30, Energy of products = 10
Exothermic
Activation energy for forward reaction is 10.
Explanation:
Exothermic reactions are defined as the reactions in which energy of the product is lesser than the energy of the reactants. The total energy is released in the form of heat and
for the reaction comes out to be negative.
Energy of reactants = 30
Energy of products = 10
Thus as energy of the product < energy of the reactant, the reaction is exothermic.
Activation energy
is the extra energy that must be supplied to reactants in order to cross the energy barrier and thus convert to products.
for forward reaction is (40-30) = 10.
Answer:
126.8, Iodine
Explanation:
- mass ×abundance/100
- (126.9045×80.45/100)+(126.0015×17.23/100)+(128.2230×2.23/100)
- 102.1+21.7+3=126.8
<em>IODINE</em><em> </em><em>has</em><em> </em><em>an</em><em> </em><em>atomic</em><em> </em><em>mass</em><em> </em><em>of</em><em> </em>126.8 or 126.9
Answer:
AuCl
Explanation:
Given parameters:
Mass of Gold = 2.6444g
Mass of Chlorine = 0.476g
Unknown:
Empirical formula = ?
Solution:
Empirical formula is the simplest formula of a compound. Here is the way of determining this formula.
Elements Au Cl
Mass 2.6444 0.476
Molar mass 197 35.5
Number of moles 2.6444/197 0.476/35.5
0.013 0.013
Divide by the
smallest 0.013/0.013 0.013/0.013
1 1
The empirical formula of the compound is AuCl
Answer: fourth option, 10.8 kJ
Explanation:
The <em>heat of fusion</em>, also named latent heat of fusion, is the amount of heat energy required to change the state of a substance from solid to liquid (at constant pressure).
The data of the <em>heat of fusions</em> of the substances are reported in tables and they can be shown either per mole or per gram of substance.
In this case we have that the<em> heat of fusion for water </em>is reported per mole: <em>6.02 kJ/mole</em>.
The formula to calculate <em>how many kJ of heat (total heat) are needed to completely melt 32.3 g of water, given that the water is at its melting point</em> is:
- Heat = number of moles × heat of fusion
The calculations are:
- number of moles = mass / molar mass
number of moles = 32.3 g / 18.015 g/mol = 1.79 mol
- Heat = 1.79 mol × 6.02 kJ / mol = 10.8 kJ ← answer