Answer:
(a) 2.88×10⁻² W/m²
(b) 8.36×10⁻³ W/m²
Explanation:
The intensity of sound from an isotropic point source, with distance L is given as
I = P/(4πL²) .................................... Equation 1
Where I = intensity of sound, P = Power from the source, L = length, π = pie.
(a)
1.4 m from the source.
I = P/(4πL²)
Given: P = 0.71 W, L = 1.4 m, π = 3.14.
Substitute into equation 1
I = 0.71/(4×3.14×1.4²)
I = 0.71/24.6176
I = 0.0288 W/m².
I = 2.88×10⁻² W/m²
(b) 2.6 m from the source.
Given: P = 0.71 W, L = 2.6 m, π = 3.14
Substitute into equation 1
I = 0.71/(4×3.14×2.6²)
I = 0.71/84.9056
I = 0.00836 W/m²
I = 8.36×10⁻³ W/m²
Answer:
It seems that you have missed the necessary options for us to answer this question, so I had to look for it. Anyway, here is the answer. Samaira needs to rent some tents for an outdoor family reunion in July, so the type of tent for Samaira to rent so that her family members are protected from the heat of the sun is SMOOTH and WHITE TENT. Hope this answer helps.
Answer:
At higher elevations, there are fewer air molecules above a given surface than a similar surface at lower levels. ... Since most of the atmosphere's molecules are held close to the earth's surface by the force of gravity, air pressure decreases rapidly at first, then more slowly at higher levels.
Explanation:
Newton's third law states "for every action, there is an equal and opposite reaction."
What this is pretty much saying is that for every action, there is a consequence. One force connects and triggers another.
Answer:
E_total = 1.30 10¹⁰ C / m²
Explanation:
The intensity of the electric field is
E = k q / r²
on a positive charge proof
The total electric field at the midpoint is
as q₁= 6 10⁻⁶ C the field is outgoing to the right
for charge q₂ = -3 10⁻⁶ C, the field is directed to the right, therefore
E_total = E₁ + E₂
E_total = k q₁ / r₁² + k q₂ / r₂²
r₁ = r₂ = r = 4 10⁻² m
E_total = k/r² (q₁ + q₂)
we calculate
E_total = 9 10⁹ / (4 10⁻²)² (6.0 10⁻⁶ +3.0 10⁻⁶)
E_total = 1.30 10¹⁰ C / m²