Answer:
t = 5.19 s
Explanation:
We have,
Height of the cliff is 132 m
It is required to find the time taken by the ball to fall to the ground. Let t is the time taken. So, using equation of kinematics as :

So, it will take 5.19 seconds to fall to the ground.
Incompressible. Compressibility is determine by the amount of space between particles in each state.
Two vectors have magnitudes of 10 and 15. The angle between them when they are drawn with their tails at the same point is 65. The component of the longer vector along the line of the shorter is 6.33 .
A vector is a quantity or phenomenon that has two independent properties: magnitude and direction. The term also denotes the mathematical or geometrical representation of such a quantity. Examples of vectors in nature are velocity, momentum, force, electromagnetic fields, and weight.
The taller component will be 15 . There will be two components taller component , one in the direction of shorter component and other perpendicular to the shorter wavelength .
The component of longer wavelength in the direction of shorter will be
= 15 cos (theta ) = 15 cos (65) = 6.33
where theta is the angle between both the vectors
To learn more about vectors here
brainly.com/question/13322477
#SPJ4
Answer:
1.1x10^-2N
Explanation:
We have the change in momentum as
P = 0.3(4.5+12)g.mph
= 0.3x0.447x(4.5+12)x10^-3
Then the force that is exerted will be
F = p/∆t
∆t = 0.2
= 0.3x0.447x(4.5+12)x10^-3/0.2
= 0.1341x16.5x10^-3/0.2
= 1.1x10^-2
Therefore the force that was exerted is equal to 1.1x10^-2