Answer:
Their is this website that has any basically every calculator on it and it show work. It is called "calculator soup"
It is fine that you did not include the measure of angle XYZ in your posting.
This question is testing your knowledge of the four types of transformations.
1) Translations - an item is "slid" to a new location.
2) Reflections - an item is "flipped" (usually over the x-axis or y-axis)
3) Rotations - an item is rotated, usually around the origin (the point (0,0) is the center of most rotations, especially in high school math).
4) Dilations - an item is enlarged or reduced by a certain ratio.
It the first three, the image after the transformation is congruent to the pre-image. It has the same size and shape. It is simply flipped, rotated, slid...
But... in the fourth, dilation, the image now has a different size. It is still, however the same shape.
In geometry terms, after the first three transformations, the image is still "congruent" to the pre-image. After dilation, the image is "similar" but not "congruent."
So... all that to say that when you rotate an angle around the origin, the measure of the angle doesn't change.
So the first choice is correct. The measure of the image of the angle is the same as the measure of the angle.
<span>m∠X’Y’Z’ = m∠XYZ
</span>
Answer:
a) The function is constantly increasing and is never decreasing
b) There is no local maximum or local minimum.
Step-by-step explanation:
To find the intervals of increasing and decreasing, we can start by finding the answers to part b, which is to find the local maximums and minimums. We do this by taking the derivatives of the equation.
f(x) = ln(x^4 + 27)
f'(x) = 1/(x^2 + 27)
Now we take the derivative and solve for zero to find the local max and mins.
f'(x) = 1/(x^2 + 27)
0 = 1/(x^2 + 27)
Since this function can never be equal to one, we know that there are no local maximums or minimums. This also lets us know that this function will constantly be increasing.
I am going to have to go with, C, because the other answers are Invalid.
100,000 would be the answer