Answer:
Given values of Planck Constant are equivalent in English system and metric system.
Explanation:
Value of Planck's constant is given in English system as 4.14 x 10⁻¹⁵eV s.
Converting this in to metric system .
We have 1 eV = 1.6 x 10⁻¹⁹ J
Converting
4.14 x 10⁻¹⁵eV s = 4.14 x 10⁻¹⁵x 1.6 x 10⁻¹⁹ = 6.63 x 10⁻³⁴ Joule s
So Given values of Planck Constant are equivalent in English system and metric system.
Answer:
(a) θ = 33.86°
(b) Ay = 49.92 N
Explanation:
You have that the magnitude of a vector is A = 89.6 N
The x component of such a vector is Ax = 74.4 N
(a) To find the angle between the vector and the x axis you use the following formula for the calculation of the x component of a vector:
(1)
Ax: x component of vector A
A: magnitude of vector A
θ: angle between vector A and the x axis
You solve the equation (1) for θ, by using the inverse of cosine function:

the angle between the A vector and the x axis is 33.86°
(b) The y component of the vector is given by:

the y comonent of the vecor is Ay = 49.92 N