Explanation:
Let f₁ is the fundamental frequency, 
Lower pitch frequency, 
Fundamental frequency is,
.....(1)
Lower frequency is,
..............(2)
Dividing equation (1) and (2) as :




So, the ratio of linear mass density μ of the string with the higher pitch to that of the string with the lower pitch is 0.00132. Hence, this is the required solution.
Answer:
L = 2774.4 
Explanation:
Using the formula
L = mvr
Where L is angular momentum
m is mass
v is velocity
r is radius
m= 51kg , v=17m/s , r=3.2m
L = 51×17×3.2
L = 2774.4 
Well first of all, a planet doesn't have a semimajor axis, although it's orbit does.
In an orbit with a smaller semimajor axis, the planet moves faster, and its orbital period is shorter.
That's why the International Space Station circles the Earth in less time than the Moon does.
0.120L + 2.345L = 2.465L = 4 significant figures in the answer
The hardest part of the job is to find the right formula to use, and write it down. You've already done that ! The rest is just turning the crank until an answer falls out.
You wrote. E = m g h.
Beautiful.
Now divide each side by (g h), and you'll have the formula for mass:
m = E / (g h).
You know all the numbers on the right side. Just pluggum in, do the arithmetic, and you'll have the mass.