can be any of 0, 2, or 3, which is to say the value of the dice are all different, 2 of them match, or all 3 are the same. So
.
For any probability density, the probabilities of all possible outcomes must sum to 1. This means

The mean/expectation of
is
![E[X]=\displaystyle\sum_xx\,P(X=x)=0\cdot p+2\cdot\frac{15}{36}+3\cdot\frac1{36}=\frac{11}{12}](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle%5Csum_xx%5C%2CP%28X%3Dx%29%3D0%5Ccdot%20p%2B2%5Ccdot%5Cfrac%7B15%7D%7B36%7D%2B3%5Ccdot%5Cfrac1%7B36%7D%3D%5Cfrac%7B11%7D%7B12%7D)
The variance of
is
![V[X]=E[(X-E[X])^2]=E[X^2]-E[X]^2](https://tex.z-dn.net/?f=V%5BX%5D%3DE%5B%28X-E%5BX%5D%29%5E2%5D%3DE%5BX%5E2%5D-E%5BX%5D%5E2)
where the second moment is
![E[X^2]=\displaystyle\sum_xx^2\,P(X=x)=0^2\cdot p+2^2\cdot\frac{15}{36}+3^2\cdot\frac1{36}=\frac{23}{12}](https://tex.z-dn.net/?f=E%5BX%5E2%5D%3D%5Cdisplaystyle%5Csum_xx%5E2%5C%2CP%28X%3Dx%29%3D0%5E2%5Ccdot%20p%2B2%5E2%5Ccdot%5Cfrac%7B15%7D%7B36%7D%2B3%5E2%5Ccdot%5Cfrac1%7B36%7D%3D%5Cfrac%7B23%7D%7B12%7D)
![\implies V[X]=\dfrac{23}{12}-\left(\dfrac{11}{12}\right)^2=\dfrac{155}{144}](https://tex.z-dn.net/?f=%5Cimplies%20V%5BX%5D%3D%5Cdfrac%7B23%7D%7B12%7D-%5Cleft%28%5Cdfrac%7B11%7D%7B12%7D%5Cright%29%5E2%3D%5Cdfrac%7B155%7D%7B144%7D)
Then the standard deviation is the square root of the variance:
![\sqrt{V[X]}=\dfrac{\sqrt{155}}{12}\approx1.037](https://tex.z-dn.net/?f=%5Csqrt%7BV%5BX%5D%7D%3D%5Cdfrac%7B%5Csqrt%7B155%7D%7D%7B12%7D%5Capprox1.037)