<h2>Users tahn apple </h2>
<h2>Hope you get the answer.... ❤️ ❤️ ❤️ ❤️ </h2>
Let Issac work for x hours, and Ruby works 8 hours more than of Issac, so Ruby work for
hours.
And Svetlana worked four times of Ruby, therefore Svetlana worked for
![4(x+8) hours](https://tex.z-dn.net/?f=%204%28x%2B8%29%20hours%20)
And total hours they worked together is 136. That is
![x+x+8 + 4(x+8) = 136 \\ x+x+8 +4x+32=136 \\ 6x+40 =136 \\ 6x=96 \\ x =16 hours](https://tex.z-dn.net/?f=%20x%2Bx%2B8%20%2B%204%28x%2B8%29%20%3D%20136%0A%5C%5C%0Ax%2Bx%2B8%20%2B4x%2B32%3D136%0A%5C%5C%0A6x%2B40%20%3D136%0A%5C%5C%0A6x%3D96%0A%5C%5C%0Ax%20%3D16%20hours%20)
So Issac worked for 16 hours, Ruby worked for 24 hours and Svetlana worked for 24 times 4 equals 96 hours .
Answer:
Let the original number be x
Successor is defined as the number which comes immediately after a particular number.
also, the successor of a whole number is the number obtained by adding 1 to that number.
Then, the successor of a number x is, x+1
As per the given condition :
we have;
![5(x+1)+x =83](https://tex.z-dn.net/?f=5%28x%2B1%29%2Bx%20%3D83)
Using distributive property on LHS (i.e,
)
Then, we have
5x+5+x=83
Combine like terms;
6x+5=83
Subtract 5 from both the sides we get;
6x+5-5=83-5
Simplify:
6x=78
Divide both side by 6,
![\frac{6x}{6} =\frac{78}{6}](https://tex.z-dn.net/?f=%5Cfrac%7B6x%7D%7B6%7D%20%3D%5Cfrac%7B78%7D%7B6%7D)
Simplify:
x =13
Therefore, the original number x is, 13
Answer:
![p= \dfrac{1}{2}](https://tex.z-dn.net/?f=p%3D%20%5Cdfrac%7B1%7D%7B2%7D)
Step-by-step explanation:
Given equation:
![p^3=\dfrac{1}{8}](https://tex.z-dn.net/?f=p%5E3%3D%5Cdfrac%7B1%7D%7B8%7D)
Cube root both sides:
![\implies \sqrt[3]{p^3}= \sqrt[3]{\dfrac{1}{8}}](https://tex.z-dn.net/?f=%5Cimplies%20%5Csqrt%5B3%5D%7Bp%5E3%7D%3D%20%5Csqrt%5B3%5D%7B%5Cdfrac%7B1%7D%7B8%7D%7D)
![\implies p= \sqrt[3]{\dfrac{1}{8}}](https://tex.z-dn.net/?f=%5Cimplies%20p%3D%20%5Csqrt%5B3%5D%7B%5Cdfrac%7B1%7D%7B8%7D%7D)
![\textsf{Apply exponent rule} \quad \sqrt[n]{a}=a^{\frac{1}{n}}:](https://tex.z-dn.net/?f=%5Ctextsf%7BApply%20exponent%20rule%7D%20%5Cquad%20%5Csqrt%5Bn%5D%7Ba%7D%3Da%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D%3A)
![\implies p= \left(\dfrac{1}{8}\right)^{\frac{1}{3}}](https://tex.z-dn.net/?f=%5Cimplies%20p%3D%20%5Cleft%28%5Cdfrac%7B1%7D%7B8%7D%5Cright%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D)
![\textsf{Apply exponent rule} \quad \left(\dfrac{a}{b}\right)^c=\dfrac{a^c}{b^c}:](https://tex.z-dn.net/?f=%5Ctextsf%7BApply%20exponent%20rule%7D%20%5Cquad%20%5Cleft%28%5Cdfrac%7Ba%7D%7Bb%7D%5Cright%29%5Ec%3D%5Cdfrac%7Ba%5Ec%7D%7Bb%5Ec%7D%3A)
![\implies p= \dfrac{1^{\frac{1}{3}}}{8^{\frac{1}{3}}}](https://tex.z-dn.net/?f=%5Cimplies%20p%3D%20%5Cdfrac%7B1%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%7D%7B8%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%7D)
![\textsf{Apply exponent rule} \quad 1^a=1:](https://tex.z-dn.net/?f=%5Ctextsf%7BApply%20exponent%20rule%7D%20%5Cquad%201%5Ea%3D1%3A)
![\implies p= \dfrac{1}{8^{\frac{1}{3}}}](https://tex.z-dn.net/?f=%5Cimplies%20p%3D%20%5Cdfrac%7B1%7D%7B8%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%7D)
Rewrite 8 as 2³:
![\implies p= \dfrac{1}{(2^3)^{\frac{1}{3}}}](https://tex.z-dn.net/?f=%5Cimplies%20p%3D%20%5Cdfrac%7B1%7D%7B%282%5E3%29%5E%7B%5Cfrac%7B1%7D%7B3%7D%7D%7D)
![\textsf{Apply exponent rule} \quad (a^b)^c=a^{bc}:](https://tex.z-dn.net/?f=%5Ctextsf%7BApply%20exponent%20rule%7D%20%5Cquad%20%28a%5Eb%29%5Ec%3Da%5E%7Bbc%7D%3A)
![\implies p= \dfrac{1}{2^{(3 \cdot \frac{1}{3})}}](https://tex.z-dn.net/?f=%5Cimplies%20p%3D%20%5Cdfrac%7B1%7D%7B2%5E%7B%283%20%5Ccdot%20%5Cfrac%7B1%7D%7B3%7D%29%7D%7D)
Simplify:
![\implies p= \dfrac{1}{2^{\frac{3}{3}}}](https://tex.z-dn.net/?f=%5Cimplies%20p%3D%20%5Cdfrac%7B1%7D%7B2%5E%7B%5Cfrac%7B3%7D%7B3%7D%7D%7D)
![\implies p= \dfrac{1}{2^{1}}](https://tex.z-dn.net/?f=%5Cimplies%20p%3D%20%5Cdfrac%7B1%7D%7B2%5E%7B1%7D%7D)
![\implies p= \dfrac{1}{2}](https://tex.z-dn.net/?f=%5Cimplies%20p%3D%20%5Cdfrac%7B1%7D%7B2%7D)