Answer:
The reactance of the capacitor
Explanation:
In an AC circuit containing different elements (capacitors, resistors and inductors), we cannot simply calculate the equivalent resistance of the circuit, so another quantity is used, which is called reactance.
For a capacitor, the reactance is given by:

where:
f is the frequency of the AC current in the circuit
C is the capacitance of the capacitor
The reactance has a similar meaning to that of the resistance for a DC current. In fact, we notice that:
- When f=0 (which means we are in regime of DC current, because the current never changes direction), the reactance is infinite. This is correct: in a DC circuit, the capacitor does not let current pass through it, so it like it has infinite resistance (=infinite reactance)
- When f tends to infinite, the reactance becomes zero: in such situation, the current in the circuit changes direction so quickly that the capacitor has no enough time to "block" the current in the circuit, so it like it has almost zero resistance (zero reactance).
Answer:
b. 0.034
Explanation:
The heat transfer coefficient of a material (U-value) is equal to the reciprocal of its R-value, therefore:

where
R is the R-value of the material
For the insulator in this problem,
R = 29
Substituting into the equation, we find the heat transfer coefficient:

Answer:
B) electrons transferred from sphere to rod.
(2) 1.248 x 10¹¹ electrons were transferred
Explanation:
Given;
initial charge on the plastic rod, q₁ = 15nC
final charge on the plastic rod, q₂ = - 5nC
let the charge acquired by the plastic rod = q
q + 15nC = -5nC
q = -5nC - 15nC
q = -20 nC
Thus, the plastic rod acquired excess negative charge from the metal sphere.
Hence, electrons transferred from sphere to rod
B) electrons transferred from sphere to rod.
2) How many charged particles were transferred?
1.602 x 10⁻¹⁹ C = 1 electron
20 x 10⁻⁹ C = ?
= 1.248 x 10¹¹ electrons
Thus,1.248 x 10¹¹ electrons were transferred
Answer:
Part a)

Part b)

Part c)

Explanation:
Part a)
As we know that the speed of light is given as


now the frequency of the light is given as

so we have


Part b)
Position of Nth maximum intensity on the screen is given as

so here we know for 3rd order maximum intensity

n = 3
L = 1.4 m


Part c)
angle of third order maximum is given as



Answer:
The degree of reflection whether faint or bright you see on the surface of an object is an indication that light particles had hit the surface. Since light is a wave and as part of its characteristics can get reflected. However, the amount of light reflected by a surface is dependent on the smoothness of the surface which can be shiny or dull, it can also be dependent on the nature of the surface which can be glass, water, and so on. So, from the question, you can see a faint reflection on the surface of a shiny plate or cup because of the smoothness of the surface which reflects the lights that hit it from a particular direction at the same angle.