1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dafna1 [17]
3 years ago
8

Learning Goal:To understand and be able to use the rules for determining allowable orbital angular momentum states.Several numbe

rs are necessary to describe the states available to an electron in the hydrogen atom. The principal quantum number ndetermines the energy of the electron. The orbital quantum number l determines the total angular momentum of the electron, and the magnetic quantum number mldetermines the component of the angular momentum parallel to a specific axis, usually the z axis.For a given principal quantum number n, the orbital quantum number can take integer values ranging from zero to n−1. For a given orbital quantum number l, the magnetic quantum number can take integer values from −l to l. A fourth number, the spin ms, is important for interactions with magnetic fields and counting states. The spin can be either +1/2 or −1/2, independent of the values of the other quantum numbers.The energy of an electron in hydrogen is related to the principal quantum number by En=(−13.60eV)/n2. The orbital angular momentum is related to the orbital quantum number by L=ℏl(l+1)−−−−−−√, and the orbital angular momentum in the z direction is related to the magnetic quantum number by Lz=mlℏ.
A. How many different values of I are possible for an electron with principal quantum number n = 5?
B. How many values of mi are possible for an electron with orbital quantum number I = 3? Express your answer as an integer.
C. The quantum state of a particle can be specified by giving a complete set of quantum numbers (n, l, m1, ms). How many different quantum states are possible if the principal quantum number is n = 3? To find the total number of allowed states, first write down the allowed orbital quantum numbers I, and then write down the number of allowed values of mi for each orbital quantum number. Sum these quantities, and then multiply by 2 to account for the two possible orientations of spin.
D. Is the state n = 3,1 = 3, m1 = -2, ms = 1/2 an allowable state? If not, why not?
a. Yes it is an allowable state.
b. No: The magnetic quantum number cannot be negative.
c. No: The magnetic quantum number must equal the orbital quantum number.
d. No: The orbital quantum number cannot equal the principal quantum number.
e. No: The magnetic quantum number must equal the principal quantum number.
E. What is the maximum angular momentum L max that an electron with principal quantum number n = 3 can have? Express your answer in units of h. (You don't need to enter the h, it is in the units field for you.)
Physics
1 answer:
Free_Kalibri [48]3 years ago
5 0

Answer:

Explanation:

1) for a given n value the l value can be from 0 to n-1

So if n= 5 it can take 0,1,2,3,4

i.e it can take 5 values

2)for an electron with l =3

it can be from -3 -2 -1 0 1 2 3

i.e it can take 7 values

3) n = 3 !!

l = 0 , 1 , 2

for l=0 , m = 0 total = 1

for l= 1 ,m = -1,0,1 total = 3

for l = 2, m=-2,-1,0,1,2 total = 5

5+3+1 = 9

total possible states = 9 * 2 = 18

Answer is 168

4)given l=3 and n=3

orbital quantum number cannot be equal to principal quantum number

its max value is l-1 only

5)L = sqrt(l(l+1))x h'

for it to be max l should be max

for n = 3 max l value is 2

therfore it is sqrt(2(2+1)) x h'

\sqrt(6) \times h'

this is the answer

You might be interested in
List six forms of electromagnetic radiation from the shortest waves(highest energy) to the longest waves (lowest energy)
romanna [79]
That's the reverse of RIVUXG
so your answer is
gamma rays
x rays
ultraviolet light
visible light
infrared
radio waves
8 0
3 years ago
(LC)Light fixtures and placement that create shadows on the set, that obscure or completely hide action in certain areas of the
Sedaia [141]

The correct answer is true.

It is true that light fixtures and placement that create shadows on the set, that obscure or completely hide action in certain areas of the set, or that change as the main character’s emotional state changes are all ways that lighting can be used to heighten the drama and suspense in dramatic films.

Lighting plays an important role in film making because it can create scenes that enhance the de drama of the moment or the right mood that the director wants to share. Lighting in the film is an art because the basic principle is that the scene needs to look natural. From that principle, filmmakers and light specialist cand create many kinds of dramatic or jubilation moments if they know how to apply light principles to each scene.

5 0
3 years ago
The vacuum pressure of a condenser is given to be 80 kpa. if the atmospheric pressure is 98 kpa, what is the gage pressure and a
dimaraw [331]

The absolute pressure is given by the equation,

P_{abs}=P_{atm}-P_{vac}

Here, P_{abs} is absolute pressure,P_{atm} is atmospheric pressure and P_{vac} is vacuum pressure.

Therefore,

P_{abs}=98 kPa-80 kPa=18kPa

The gage pressure is given by the equation,

P_{gage}=P_{abs}-P_{atm}.

Thus,

P_{gage}=18kPa-98 kPa=-80 kPa.

In kn/m^2,

The absolute pressure,

P_{abs}=18kPa(\frac{1kN/m^2}{kPa}) =18\ kN/m^2

The gage pressure,

P_{gage}=-80kPa(\frac{1kN/m^2}{kPa}) =-80\ kN/m^2.

In lbf/in2

The absolute pressure,

P_{abs}=18\ kPa(\frac{1.45\times 10^{-1}\ lbf/in^2 }{1kPa} )=2.6\ lbf/in^2

The gage pressure,

P_{gage}=-80kPa(\frac{1.45\times 10^{-1}\ lbf/in^2 }{1kPa} )=-11.6\ lbf/in^2

In psi,

The absolute pressure,

P_{abs}=18\ kPa(\frac{1.45037738\times 10^{-1}\ psi }{1kPa})=2.610\ psi.

The gage pressure,

P_{gage}=-80kPa(\frac{1.45037738\times 10^{-1}\ psi }{1kPa} )=-11.6030\ psi

In  mm Hg

The absolute pressure,

P_{abs}=18kPa(\frac{7.5\ mm\ of\ Hg }{1\ kPa})= 135\ mm\ of\ Hg

The gage pressure,

P_{gage}=-80kPa(\frac{7.5\ mm\ of\ Hg }{1\ kPa})=-600\ mm\ of\ Hg



3 0
2 years ago
What do you think would happen to the force of attraction of two interacting charges if their distance apart is halved?
sweet [91]

Answer:

The new force becomes 4 times the initial force.

Explanation:

The force of attraction or repulsion is given by the relation as follows :

F=k\dfrac{q_1q_2}{d^2}

Where

d is the distance between the interacting charges

F is inversely proportional to the distance between charges.

If the distance is halved, d'=(d/2), new force is given by :

F'=k\dfrac{q_1q_2}{d'^2}\\\\=k\dfrac{q_1q_2}{(\dfrac{d}{2})^2}\\\\=k\dfrac{q_1q_2}{\dfrac{d^2}{4}}\\\\=4\times \dfrac{kq_1q_2}{d^2}\\\\F'=4F

So, the new force becomes 4 times the initial force.

4 0
2 years ago
Solved, can someone check it over! ​
kakasveta [241]

Answer:

its good no need to change anything :))

4 0
2 years ago
Other questions:
  • ___________ is the process by which wind removes surface materials.
    15·2 answers
  • What does the impulse-momentum theorem state? A. Impulse equals change in momentum B. Impulse and momentum change force. C. Impu
    10·1 answer
  • Which of the following is generally correct concerning the velocity and wavelength of waves in two different materials disturbed
    15·1 answer
  • A satellite has a mass of 5832 kg and is in a circular orbit 4.13 × 105 m above the surface of a planet. The period of the orbit
    13·1 answer
  • Describe transmission
    11·1 answer
  • What is the equivalent resistance of a series circuit with the following resistors: 10 ohms, 35 ohms, and 150 ohms?
    7·2 answers
  • an electric motor converts electrical energy into which kind of energy? potential kinetic storage chemical​
    9·2 answers
  • [2.21] Please help me find a) and b)
    5·1 answer
  • THIS IS MY NUMBER CALL me :::<br><br><br><br><br><br>PEHLI FURSAT MAIN NIKAL XD​
    13·2 answers
  • I need help!!! :::///
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!