1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Scrat [10]
3 years ago
8

In a figure, OB is the radius of a big semicircle and XB is the radius of the small semicircle. Given that OX = 14 cm, Calculate

the area and the perimeter of the shaded region in the figure.
(Take π = 22/7).

Mathematics
1 answer:
oee [108]3 years ago
7 0

Answer:

perimeter of the shaded region = 88 +44+28 =160 cm

Step-by-step explanation:

perimeter of shaded region = length AO + arc OB + arc AB

length AO = radius of bigger circle

radius of bigger circle = OX + OB = 2×radius of smaller circle = 2×14 cm = 28 cm

therefore AO = 28 cm

length of arc oB= half of circumference of smaller circle = \pi×14 = 44 cm

length of arc ab = half of circumference of bigger circle  = \pi×28 =\frac{22}{7}×28= 88

therefore perimeter of the shaded region = 88 +44+28 =160 cm

area of the shaded region = half of area of bigger circle - half of area of smaller circle

                                           =\frac{1}{2} \pi 28^{2} -\frac{1}{2} \pi 14^{2}

                                           =\frac{\pi }{2} (28^{2} -14^{2} )

  solving we gen area of shaded region = 924

You might be interested in
Where dose 0.84 go on a number line
Aleksandr-060686 [28]

Answer: It depends on what kind, if the intervals are by 1, out it between 0 and 1, but closer to 1. If its by 1/2, put between .5 and 1. and so forth

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
What the opposite integer of 10
inysia [295]
The opposite integer of 10 is -10
7 0
3 years ago
Read 2 more answers
Please help !! what is 73% of 49
elena55 [62]

Answer:

yeah, it is 35.77

Step-by-step explanation:

:)))))

7 0
3 years ago
Can u help its just boxplots :)
anyanavicka [17]
Class B is the answer, it says 50% and class A is completely in the box. It’s B
8 0
3 years ago
Read 2 more answers
Rectangle 1 has length x and width y. Rectangle 2 is made by multiplying each dimension of Rectangle 1 by a factor of K, where k
STALIN [3.7K]

\bold{\huge{\underline{\pink{ Solution }}}}

<h3><u>Given </u><u>:</u><u>-</u><u> </u></h3>

  • <u>Rectangle </u><u>1</u><u> </u><u> </u><u>has </u><u>length </u><u>x</u><u> </u><u>and </u><u>width </u><u>y</u>
  • <u>Rectangle</u><u> </u><u>2</u><u> </u><u>is </u><u>made </u><u>by </u><u>multiplying </u><u>each </u><u>dimensions </u><u>of </u><u>rectangle </u><u>1</u><u> </u><u>by </u><u>a </u><u>factor </u><u>of </u><u>k </u>
  • <u>Where</u><u>, </u><u>k </u><u>></u><u> </u><u>0</u><u> </u><u> </u>

<h3><u>Answer </u><u>1</u><u> </u><u>:</u><u>-</u></h3>

Yes, The rectangle 1 and rectangle 2 are similar .

<h3><u>According </u><u>to </u><u>the </u><u>similarity </u><u>theorem </u><u>:</u><u>-</u></h3>

  • If the ratio of length and breath of both the triangles are same then the given triangles are similar.

<u>Let's </u><u>Understand </u><u>the </u><u>above </u><u>theorem </u><u>:</u><u>-</u>

The dimensions of rectangle 1 are x and y

<u>Now</u><u>, </u>

  • Rectangle 2 is made by multiplying each dimensions of rectangle 1 by a factor of k .

Let assume the value of K be 5

<u>Therefore</u><u>, </u>

The dimensions of rectangle 2 are

\sf{ 5x \:and \:5y }

<u>Now</u><u>, </u><u> </u><u>The </u><u>ratios </u><u>of </u><u>dimensions </u><u>of </u><u>both </u><u>the </u><u>rectangle </u><u>:</u><u>-</u>

  • \bold{Rectangle 1 =  Rectangle 2}

\bold{\dfrac{ x }{y}}{\bold{ = }}{\bold{\dfrac{5x}{5y}}}

\bold{\blue{\dfrac{ x }{y}}}{\bold{\blue{ = }}}{\bold{\blue{\dfrac{x}{y}}}}

<u>From </u><u>above</u><u>, </u>

We can conclude that the ratios of both the rectangles are same

Hence , Both the rectangles are similar

<h3><u>Answer </u><u>2</u><u> </u><u>:</u><u>-</u><u> </u></h3>

<u>Here</u><u>, </u>

We have to proof that, the

  • Perimeter of rectangle 2 = k(perimeter of rectangle 1 )

In the previous questions, we have assume the value of k = 5

<h3><u>Therefore</u><u>, </u></h3>

<u>According </u><u>to </u><u>the </u><u>question</u><u>, </u>

Perimeter of rectangle 1

\sf{ = 2( length + Breath) }

\bold{\pink{= 2( x + y ) }}

Thus, The perimeter of rectangle 1

Perimeter of rectangle 2

\sf{ = 2( length + Breath) }

\sf{ = 2(5x + 5y) }

\sf{ =  2 × 5( x + y) }

\bold{\pink{= 10(x + y) }}

Thus, The perimeter of rectangle 2

<u>According </u><u>to </u><u>the </u><u>given </u><u>condition </u><u>:</u><u>-</u>

  • Perimeter of rectangle 2 = k( perimeter of rectangle 1 )

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ 2(x + y) = 10(x + y)}

\bold{\pink{2x + 2y = 5(2x + 2y) }}

<u>From </u><u>Above</u><u>, </u>

We can conclude that the, Perimeter of rectangle 2 is 5 times of perimeter of rectangle 1 and we assume the value of k = 5.

Hence, The perimeter of rectangle 2 is k times of rectangle 1

<h3><u>Answer 3 :</u></h3>

<u>Here</u><u>, </u>

We have to proof that ,

  • <u>The </u><u>area </u><u>of </u><u>rectangle </u><u>2</u><u> </u><u>is </u><u>k²</u><u> </u><u>times </u><u>of </u><u>the </u><u>area </u><u>of </u><u>rectangle </u><u>1</u><u>.</u>

<u>That </u><u>is</u><u>, </u>

  • Area of rectangle 1 = k²( Area of rectangle)

<h3><u>Therefore</u><u>, </u></h3>

<u>According </u><u>to </u><u>the </u><u>question</u><u>, </u>

<u>Area </u><u>of </u><u>rectangle </u><u>1</u>

\sf{ = Length × Breath }

\sf{ = x × y }

\bold{\red{= xy }}

<u>Area </u><u>of </u><u>rectangle </u><u>2</u>

\sf{ = Length × Breath }

\sf{ = 5x × 5y }

\bold{\red{ = 25xy }}

<u>According </u><u>to </u><u>the </u><u>given </u><u>condition </u><u>:</u><u>-</u>

  • Area of rectangle 1 = k²( Area of rectangle)

\sf{ xy = 25xy }

\bold{\red{xy = (5)²xy }}

<u>From </u><u>Above</u><u>, </u>

We can conclude that the, Area of rectangle 2 is (5)² times of area of rectangle 1 and we have assumed the value of k = 5

Hence, The Area of rectangle 2 is k times of rectangle 1 .

7 0
2 years ago
Other questions:
  • Mr. and Mrs. Smith retired on 80 percent of their pre-retirement earnings. If they are living on $35,000 per year, what was thei
    8·1 answer
  • a rock climber that is 0.74 mile above sea level ascends 0.18 mile and then descends 0.8 mile which represents the location of t
    7·2 answers
  • What’s the GCF of 12 and 42?
    15·1 answer
  • What is 6m2 + 6m - 9m2
    12·1 answer
  • Solve for x with a step by step explanation please<br> (3/5)x+1/4=(3/4)x-2/5
    8·1 answer
  • What whole number comes right before 105?
    15·2 answers
  • Solve x4 + x2 – 2 = 0.
    14·1 answer
  • If you have 12 campers and you buy each a book that cost 7.50 dollars how much did you spend
    8·1 answer
  • ........................
    12·1 answer
  • The mapping diagram shows a functional relationship.
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!