Answer:
Earth's atmosphere was largely made up of nitrogen and carbon dioxide gases. After photosynthesizing organisms multiplied on Earth's surface and in the oceans, much of the carbon dioxide was replaced with oxygen.
Idk if this helps but plz mark brainliest if it does
Answer:
7.6 s
Explanation:
Considering kinematics formula for final velocity as

Where v and u are final and initial velocities, a is acceleration and s is distance moved.
Making v the subject then

Substituting 8.8 m/s for u, 138 m for s and 2.45 m/s2 for a then

Also, v=u+at and making t the subject of the formula

Substituting 27.45 m/s for v, 8.8 m/s for u and 2.45 m/s for a then

Therefore, it needs 7.6 seconds to travel
Answer:
moon disappear because of the rotation
We anticipate a constant Poynting vector of magnitude since the hot resistor will be emitting heat and none of the electric or magnetic fields will change over time.
S = P/A
= I2R/ 2πrL
= 332 kW/m2
Always pointing away from the wire, this Poynting vector.
<h3>What is the Poynting vector?</h3>
Describes the size and direction of the energy flow in electromagnetic waves using a Poynting vector. It bears the name of the 1884 invention of English physicist John Henry Poynting. It stands for the electromagnetic field's directional energy flux or power flow. The Poynting vector is significant in a static electromagnetic field because it determines the direction of energy flow in an electromagnetic field. This vector represents the radiation pressure of an electromagnetic wave and points in its direction of propagation.
To learn more about Poynting vector, visit:
<u>brainly.com/question/17330899</u>
#SPJ4
<span>The correct option is C. Energy cannot be created or destroyed. This statement is known as law of conservation of energy, and it implies that whenever a certain form of energy does change, the loss of this form of energy must have converted into an another type of energy. A typical example is an object falling to the ground: initially, the object has gravitational potential energy. As the object falls down, it loses potential energy (since its altitude from the grounf decreases), but it acquires kinetic energy (because its velocity increases). In this example, potential energy has converted into kinetic energy, but the total energy of the object has remained constant.</span>