Answer:
The image distance is 20.0 cm.
Explanation:
Given that,
Power = 1.55 dp
Distance between book to eye = 26.0+3.00=29.0 cm
We need to calculate the focal length
Using formula of focal length

Put the value into the formula



We need to calculate the image distance
Using lens formula


Put the value into the formula



Hence, The image distance is 20.0 cm.
Answer:
4 %
2 ) 3.42 %
Explanation:
Sensitivity requirement of 4 milligram means it is not sensitive below 4 milligram or can not measure below 4 milligram .
Given , 4 milligram is the maximum error possible .
Measured weight = 100 milligram
So percentage maximum potential error
= (4 / 100) x 100
4 %
2 )
As per measurement
weight of 6 milliliters of water
= 48.540 - 42.745 = 5.795 gram
6 milliliters of water should measure 6 grams
Deviation = 6 - 5.795 = - 0.205 gram.
Percentage of error =(.205 / 6 )x 100
= 3.42 %
A firm current ratio is 1. 0 and its quick ratio is 1. 0. If current liabilities are 12300 then its inventories will be 12300
Inventory is the accounting of items, component parts and raw materials that a company either uses in production or sells
The quick and current ratios are liquidity ratios that help investors and analysts gauge a company's ability to meet its short-term obligations. The current ratio divides current assets by current liabilities. The quick ratio only considers highly-liquid assets or cash equivalents as part of current assets.
current ratio = current assets / current liabilities
current assets = current ratio * current liabilities
= 1 * 12300 = 12300
since , inventory is a current asset for accounting purpose , hence inventories will be 12300
To learn more about current ratios
brainly.com/question/19579866?referrer=searchResults
#SPJ4
Answer:
I Will say the Answer is A
Explanation:
Answer:
0.08 ft/min
Explanation:
To get the speed at witch the water raising at a given point we need to know the area it needs to fill at that point in the trough (the longitudinal section), which is given by the height at that point.
So we need to get the lenght of the sides for a height of 1 foot. Given the geometry of the trough, one side is the depth <em>d</em> and the other (lets call it <em>l</em>) is given by:

since the difference between the upper and lower base is the increase in the base and we are only at halft the height.
Now we can calculate the longitudinal section <em>A</em> at that point:

And the raising speed <em>v </em>of the water is given by:

where <em>q</em> is the water flow (1 cubic foot per minute).