Answer:
x = 1
x = -5/8 + i* root( 39) / 8
or x = -5/8 - i* root( 39) / 8
Step-by-step explanation:
(x+x)^2 × -(x×(-1))=4+x-x^2
solve for x, show work.
(x+x)^2 × -(x×(-1)) = 4+x-x^2
Simplify:
(2x)^2 * (-(-x)) = 4 + x - x^2
4x*x * (-(-x)) = 4 + x - x*x
4*x*x*x = 4 + x - x*x
4*x*x*x - 4 = x *(1 - x)
4* (xxx - 1) = x * (1- x)
4* (x - 1)*( x*x +x + 1) = x (1 - x)
4( xx + x + 1) = -x
x = 1 is a solution.
4xx + 4x + 4 = -x
4xx + 5x + 4 = 0
x = -5/8 + root(25 - 4*4*4) / 2*4
x = -5/8 + i* root( 39) / 8
or x = -5/8 - i* root( 39) / 8
also x = 1